PROJECT SPOTLIGHT:
College of Charleston
School of Business
A new SDI mill in the American heartland can meet your H-Piling needs.

Steel Dynamics’ new structural and rail mill near Columbia City, Indiana, is producing A572-Gr. 50 piling in lengths up to and over 100 feet. We also offer a full range of wide-flange sections.

H-Pile section sizes.

<table>
<thead>
<tr>
<th>HP14x73</th>
<th>HP12x53</th>
<th>HP10x42</th>
<th>HP8x36</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP14x89</td>
<td>HP12x63</td>
<td>HP10x57</td>
<td></td>
</tr>
<tr>
<td>HP14x102</td>
<td>HP12x74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP14x117</td>
<td>HP12x84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please contact your local SDI distributor to place an order.

Pipe & Piling Supplies Ltd.
www.pipe-piling.com
CANADA

British Columbia
Port Coquitlam, BC
604-942-6311
sorlando@pipe-piling.com

Alberta
Nisku, AB
780-955-0501
bclarkson@pipe-piling.com

Calgary, AB
403-236-1332
gyoung@pipe-piling.com

Ontario
Brampton, ON
905-840-9250
dewart@pipe-piling.com
dboulton@pipe-piling.com

Quebec
St-Hubert, QC
450-445-0050
Fax: 450-445-4825
jdyrm@pipe-piling.com
abhanta@pipe-piling.com

Nova Scotia
Bedford, NS
902-855-6158
kbrady@pipe-piling.com

U.S.A.
Washington
Auburn, WA
253-939-4700
Bryanpps1@earthlink.net

Nebraska
Omaha, NE
402-896-9611
mdahlan@pipe-piling.com

Michigan
Kincheloe, MI
906-495-2245
rggiffith@pipe-piling.co

Steel & Pipe Supply Co. Inc.
www.spaci.com
555 Poyntz Avenue
Manhattan, KS 66502
800-521-2345
Fax: 785-587-5174

CMRM
www.cmrm.com
950 Industrial Road
Cambridge, Ontario
Canada N3H 4W1
800-667-0447
Fax: 519-650-2223
rmcmartin@rollformgroup.com

George A. Lanxon Piling Sales
P. O. Box 3069
Fairview Heights, IL 62208
618-632-2998
618-271-0031
Fax: 618-632-9806
Barbara J. Lanxon, President

Midwest Pipe & Steel Inc.
mpsi.info@midwestpipe.com
333 East Berry Street
P. O. Box 11558
Fort Wayne, IN 46859
800-589-7578
260-422-6541
Fax: 260-426-0729

International Construction Services Inc.
sisi@si.net
P. O. Box 15598
Pittsburgh, PA 15244-0598
888-593-1600
Fax: 412-788-9180

International
Construction Services Inc.
sisi@si.net
P. O. Box 15598
Pittsburgh, PA 15244-0598
888-593-1600
Fax: 412-788-9180

San Francisco
P. O. Box 5206
Fair Oaks, CA 95628-9104
916-989-6720

Regal Steel Supply
Northern California
West Washington Street
at Port Road 23
Stockton, CA 95203
800-649-3220
Fax: 209-943-3223
mchewing@regalsteel.net

R.W. Conklin Steel Supply Inc.
www.conklinsteel.com
3336 Carpenters Creek Drive
Cincinnati, OH 45241-3813
888-266-5546
Fax: 513-769-0610

Saginaw Pipe
www.saginawpipe.com
1980 Highway 31 South
Saginaw, AL 35137
800-571-7433
Fax: 281-361-6025

Structural and Rail Division
2601 County Road 700 East, Columbia City, Indiana 46725
(260) 625-8100 • (866) 740-8700 • www.steeldynamics.com
Contents

Letter from the President
By Wayne E. Waters ...2

2004 PDCA Board of Directors and Committee Chairmen.........................4

Letter from the Executive Director
By Tanya Goble ..6

Project Spotlight:
College of Charleston Project Gets an A+8

2005 Winter Roundtable
Conference Information ..14

Double-Acting Air/Steam Hammers17

2004 PDCA Membership ListingI-VIII

Pile Foundations:
An Environmental Solution?21

Member Profile:
Dr. George Goble Recalls 40 Years in the Pile-driving Industry32

PDCA Membership Application Form34

Calendar of Events ..37

PDCA New Members ..38

Advertiser Index ...40

COVER:
Rendering of Beatty Center for the School of Business at the College of Charleston in Charleston, SC, courtesy of LS3P Associates Ltd. of Charleston, SC.
It’s hard to believe that the year is almost over and I’m writing this, my final President’s Message. This year has been a very productive one for the PDCA. Another DICEP conference and a busy year for the technical and other committees assure our continued growth into the organization of choice for pile driving contractors.

Our first chapter, the PDCA of South Carolina, has been extremely successful. Local networking provides an opportunity to work closely with the engineering community, state DOTs and, specifically, to address local issues. At the September board meeting, which followed the DICEP conference in Los Angeles, the board reconfirmed its commitment to develop these local chapters, a necessity for future PDCA growth. The plan is to add chapters in the Rocky Mountain area and New Orleans in 2005.

In an effort to attract more members and encourage the establishment of such local chapters, a new membership category was created for 2005. For any contractor with a gross income of $1 million dollars or less, the dues will be $350 per year, or half the cost of a regular membership. The regular membership will be increased from $650 to $700. We feel there are numerous contractors around the country that can contribute to the success of the PDCA, but simply are not large enough to afford the dues at the current rate. We are hopeful they will take advantage of the reduced rates. Members in this category will receive the same services as those in the regular contractor category.

I once attended a leadership conference where the theme was “Working to Make a Difference.” These are five short words, but, if embraced by PDCA members, they would permit us to reach goals that often seem unreachable. Much success can be created when more than a select few participate. In addition to the membership commitment to the PDCA, I ask that you give consideration to get involved by joining one of our many committees. There is considerable opportunity in many different areas of interest. Your input can make a difference.

I would like to thank the board of directors, committee chairmen and their respective members, and Executive Director Tanya Goble, for all the hard work put forth to continue our vast range of services and benefits. These individuals contribute countless hours to assure the continued success of the PDCA.
A Whole Lot of Hammer

Introducing the new line of 12 affordable and dependable hammers from Pileco, Inc.

These hammers redefine the name you’ve come to trust for all of your pile driving needs.

Tipping the scales in your favor with quality equipment & world class support.
2004 PDCA Board of Directors & Committee Chairmen

2004 Board of Directors
Wayne E. Waters
President
P: (904) 268-4419
F: (904) 260-9379
C: (904) 631-8308
6467 Greenland Road
Jacksonville, FL 32258
wew2150@aol.com

Randy Dietel
Vice President
P: (409) 945-3459
F: (409) 945-4318
P .O. Box 1847
Texas City, TX 77592-1847
randy@pilinginc.com

Mark Weisz
Secretary/Treasurer
P: (707) 562-4100
F: (707) 562-4106
P .O. Box 2195
Vallejo, CA 94592
mark@esmarine.com

Jim Frazier
Past President
P: (303) 791-5642
F: (303) 791-5647
C: (303) 419-1543
9002 North Moore Road
Littleton, CO 80125
jim@wedrivepile.com

John Linscott
Member
P: (207) 799-8514
F: (207) 799-8538
89 Pleasant Ave.
South Portland, ME 04106
john.linscott@hbfleming.com

Harry Robbins
Member
P: (843) 577-0545
F: (843) 577-0547
P.O. Box 70986
Charleston, SC 29415
jhrobbins@aol.com

Trey Ford
Member
P: (757) 497-3593
F: (757) 497-0031
4985 Euclid Road
Virginia Beach, VA 23462
piledriver@msn.com

Reginald K. L. Lee
Member
P: (808) 735-3211
F: (808) 735-7413
1209 Pihana St.
Honolulu, HI 96825
lee016@hawaii.rr.com

Garland E. Likins, Jr.
Member
P: (216) 831-6131
F: (216) 831-0916
4535 Renaissance Parkway
Cleveland, OH 44128
garland@pile.com

Rory Kelly
Member
P: (703) 978-2500
F: (703) 978-2908
5610-B Sandy Lewis Dr.
Fairfax, VA 22032
rkelly@skylinesteel.com

Stephen K. Whitty, Jr.
Member
P: (985) 643-0690
F: (985) 643-0690
C: (985) 707-7353
P.O. Box 1607
Slidell, LA 70459-1607
swihitty@earthlink.net

Warren Waite
Member
P: (800) 474-5326
F: (713) 691-0089
P.O. Box 16099
Houston, TX 77222
wwaite@pileco.com

Tanya Goble
Executive Director
P: (303) 517-0421
F: (303) 443-3871
P.O. Box 19527
Boulder, CO 80308-2527
ceo@piledriver.org

2004 Committee Chairmen
Van Hogan
Communications Committee
P: (904) 268-4419
F: (904) 260-9379
C: (904) 631-8308
6467 Greenland Road
Jacksonville, FL 32258
communications@piledrivers.org

John Linscott
Environmental Committee
P: (207) 799-8514
F: (207) 799-8538
89 Pleasant Ave.
South Portland, ME 04106
environmental@piledrivers.org

Wayne E. Waters
Finance Committee
P: (904) 268-4419
F: (904) 260-9379
C: (904) 631-8308
6467 Greenland Road
Jacksonville, FL 32258
finance@piledrivers.org

Mark Weisz
Education Committee
P: (707) 562-4100
F: (707) 562-4106
P.O. Box 2195
Vallejo, CA 94592
education@piledrivers.org

Michael F. Engestrom
Market Development Committee
P: (954) 384-4545
F: (954) 337-0831
772 Sand Creek Circle
Weston, FL 33327
marketdevelopment@piledrivers.org

Randy Dietel
Technical Committee
P: (409) 945-3459
F: (409) 945-4318
P.O. Box 1847
Texas City, TX 77592-1847
technical@piledrivers.org
Bermingham hammer
the clean hammer.

use 90% less fuel.
see www.berminghammer.com for details
1-800-668-9432
PDCA has had a very productive year so far. I would like to highlight some of our recent and upcoming activities for our membership.

2004 PDCA Design & Installation of Driven Piles Seminar

The 5th annual PDCA Design & Installation of Cost-Efficient Driven Piles Conference was held September 16-17th in Los Angeles, California. Attendance was quite good and a range of interesting topics were discussed including:

- High Capacity Piles
- Pile Installation at Soldier Field
- Incorporating Setup in the Design & Installation of Driven Piles
- Support Cost Components of Driven Pile Foundations
- Pile Testing Methods
- Pile Design and Installation Codes
- Pinnacle Casino Resort Case Study
- Vibration Monitoring
- Batter Piles for Lateral Loads

Many thanks go to our excellent speakers that include Dan Brown of Auburn University; George Goble; Michael Holloway of Instituttech; Ed Kavazanjian of Arizona State University; Van Komurka of Wagner Komurka Geotechnical; Peter Osborn of the FHWA; Barry Roth from Municon Consultants; and Michael Wysockey of Thatcher Engineering. PDCA has a few remaining copies of the proceedings. PDCA members can request their free copy by calling (303) 517-0421.

9th Annual PDCA Winter Roundtable Conference

Please plan on attending the next Winter Roundtable Conference to be held February 17-19, 2005 in beautiful, historic Charleston, South Carolina at the Francis Marion Hotel. The program has been completed and it promises to be our best one yet! Two new short courses will be presented on Thursday, February 17, followed by the main conference on Friday and Saturday morning. PDCA committees and the board of directors will also have meetings. Full program details are presented in this edition of Piledriver. Early hotel reservations are strongly encouraged this year, as there is another major event in Charleston that same weekend.

2005 PDCA Professors Piling Institute

The next College Professors Piling Institute is planned for June 19-24, 2005. This intensive five-day program presents the latest concepts in driven-pile design and the installation of 25 professors that teach foundation engineering courses. Extensive technical material, notes, course outlines and teaching materials will be provided to the attendees. PDCA member Build, Inc. will be providing a pile-driving demonstration during the institute. Many thanks to Build, Inc. for their generous support!

The Piling Institute was extremely well-received in 2002 and 2003 and we are looking to build upon its tremendous success in 2005. There is simply no more effective way for PDCA to address the current gaps in engineering education that can limit use of driven piles for deep-foundation projects.

We need your help. The Piling Institute is a cost- and labor-intensive project. Your association is funding virtually all expenses for the invited professors and instructors. Please consider sponsoring a professor at this prestigious event. With your help, we can build a solid foundation of enlightened engineers for the future. Complete sponsorship information is available on the PDCA Web site at www.piledrivers.org.
PDCA Committees Highlights

Our committees are now meeting regularly via phone conference so it’s easier than ever to get involved. If you are interested in joining a committee, please contact PDCA Headquarters at (303) 517-0421. Here are a few key highlights of recent PDCA committee meetings and activities.

Communications Committee

The committee is working on new membership management software tools to significantly improve our online and printed directories, allow members to easily update their company and contact information, provide better broadcast e-mail capability, support e-commerce for conference registrations and membership renewals and much more.

Education Committee

The committee has completed the program planning for the 2005 Winter Roundtable. This fall, fundraising for next year’s Professors Institute will be conducted and a new pile-driving educational video will be completed.

Environmental Committee

This new committee is off to a strong start. As its first task, the committee will be tackling the problem of pile-driving vibrations. Look for more information about an important initiative in this area soon.

Market Development Committee

The Market Development Committee has completed work on a new trade show display for PDCA. PDCA will be exhibiting at upcoming events as a way of increasing our visibility with contractors and geotechnical engineers. Look for the PDCA booth at the GeoInstitute in January and ConExpo in March.

Technical Committee

The committee has developed a first draft of a new Pile Installation Specification for private sector projects and plans to make it available to our members in time for the Winter Roundtable in February. The new specifications cover each of the major pile types and capacity determination methods and will be designed to be easy for engineers to incorporate into new designs.

PDCA Membership Directories

The 2004 edition of the PDCA membership directory is now available. PDCA members have been mailed their copies along with new hardhat stickers and the new educational CD, Driven Piles are Tested Piles. A listing of PDCA’s 2004 Contractor and Associate (company) members is provided as a special pull-out section in this edition of Piledriver. A complete printable version is also available online at www.piledrivers.org. ▼
The College of Charleston in Charleston, SC will soon be rating even higher marks amongst its faculty and staff once the new Beatty Center for the School of Business Economics is completed later this year.

The $9 million project consists of constructing a four-story building and renovating 7,000 sq. ft. of existing building space. Complete with a steel pile, concrete cap and grade-beam foundation, the structure has a steel frame with three concrete towers to house stairs and an elevator.

“The interior finish includes painted architectural steel, stone, tile and a carpet floor covering, with glass hand rails at monumental stairs and balconies,” explains Billy Boyer, project manager with Charleston-based general contractor Newton Builders. “We are the team with the architect, owner and all subcontractors to construct this new building for the College of Charleston.”

Adds architect Ken Harkins of LS3P Associates Ltd. of Charleston, SC: “This facility will provide office space for administration and staff. It is a 48,000-sq.-ft. [building] connected to the existing Tate Center for Entrepreneurship by way of a four-story atrium. The College of Charleston is one of the oldest institutions in America and is located in the old and historic district of the city.”

PDCA Member Pile Drivers Inc. drove HP12 X 53 Steel H-piles in 40 ft. sections using a Vulcan 06 Air Hammer.

Unique and tight site
What makes this project unique is its location.

“We’re building it between two existing buildings with a street parking lot on the other,” explains Boyer. “The building takes up all the property! We have had to build in the shape of a horseshoe and fill in on the way out.”

Harkins says the atrium is unique “with its balconies serving as circulation along one side, similar to many historic Charleston homes with piazzas overlooking their garden. This is [unusual] for a college building.”

LS3P began designing the project in 2002. Newton Builders began work on the project in mid September 2003, the same time as pile-driving contractor and PDCA member Pile Drivers Inc., also of Charleston, SC.

S&ME Inc. of Mt. Pleasant, SC, also a PDCA member, served as geotechnical engineer on the project.

“We provided geotechnical design services and construction quality assurance services,” explains Forrest Foshee, S&ME Inc.’s vice president. “We performed [an] initial geotechnical exploration in August 2003. Dynamic pile-testing services were provided [as well as] pre- and post-construction survey. [We also] monitored installation and vibrations, inspected welds and fireproofing and performed strength testing on concrete.”

John King, of Pile Drivers, Inc., noted that the largest obstacle his team encountered was the designer’s preference for auger cast piles. King says driven piles were selected over auger cast for several reasons.

The project was designed to utilize auger cast piles. However, the specifications provided for an alternate deep-foundation design consisting of HP14x73 piles and HP12x63 piles. Prior to the bid, the South Carolina Chapter of the PDCA got involved. PDCA members were able to convince the project engineer that HP12x53 piles would be adequate for use in the project which helped to make driven piles more competitive with auger cast piles.

Harry Robbins, president of the South Carolina PDCA Chapter, also addressed the auger cast pile reinforcement issue. “Auger cast piles typically require steel cages for reinforcement. These reinforcement cages are pushed into position after the grout has been placed in the augered hole. It is difficult to get these cages into the proper position within the pile, particularly in long piles, and there is no way to verify proper placement.”
The $9 million project consists of constructing a four-story building and renovating 7,000 sq. ft. of existing building space.

“We gave the owner a better foundation with the driven pile instead of the auger cast piles. The driven piles are all tested piles, so the owner can see what they get before it goes into the ground.”

— John King, Pile Drivers Inc.
This proved to be another advantage for the driven pile. King enjoyed the fact “that driven piles are better than auger cast in many ways. “You can see what you have from tip to butt before piles are driven. There is no guesswork on the reinforcement in the finished product in driven piles as there is in auger cast piles.”

He continues: “Test piles were driven on September 15, 2003 and we finished production piles in October 2003. The five test piles were 90 ft. below grade and production piles were 85 ft. below grade. Piles were driven with a Vulcan 06 Air Hammer 19,500 ft. lbs. We furnished and drove the 12-inch x 53# steel H-piles, supplied by PDCA member Skyline Steel. Richard Gilbert of Skyline Steel was a tremendous help.” A total of 154 piles 85 ft. below grade were driven.

Project has share of challenges

S&ME’s Foshee says: “The subsurface conditions generally consisted of very soft clay interbedded with loose to dense sands, to a depth of about 28 ft., underlain by soft to firm clays and silts to about 55 ft. Medium dense to very dense sands were encountered from 55 ft. to 75 ft. where the cone penetration test (CPT) soundings encountered the Cooper Group Marl.” (The Cooper Group Marl is a thick stratum of over-consolidated, calcareous sand silt, and is the typical bearing stratum for deep foundations in the Charleston area). Foshee adds that what he found unique and challenging about the project was “working in an historically sensitive area with many very old unreinforced masonry structures in the immediate vicinity.”

The project involved driving piles in an historic area where building owners can be “sensitive” to vibrations.

“In Charleston,” King explains, “with our historic buildings, all driven piles are unique in the perception that damage could be caused. There have been hundreds of driven-pile projects and no damage done to any structures from piles being driven.”

King continues: “The piles were driven as all piles are driven in Charleston. First, we pre-auger around 40 ft. to make sure there are no obstructions in the ground to set the first section of piles.
CENTRIFUGALLY SPUN PRECAST CONCRETE CYLINDER PILES

STRUCTURAL SOLUTIONS FOR THE MARINE ENVIRONMENT

ADVANTAGES:

- LARGE BENDING MOMENTS
- LONG UNSUPPORTED LENGTHS
- LARGE COMBINED AXIAL LOADS AND BENDING MOMENTS
- HOLLOW CROSS SECTION ALLOWS FOR EASY PILE TO CAP CONNECTIONS
- STREAM AND WIND DRAG ARE REDUCED BY THE ROUND SHAPE
- DENSE CONCRETE SURFACE, LOW WATER CEMENT RATIO AND REDUCED CHLORIDE PERMEABILITY DUE TO CENTRIFUGAL CASTING

Cylinder piles; a cost effective, alternative solution to conventional steel, drilled shaft, round static cast and square prestressed concrete piles.

Contact: Joe Rose, P.E.
Phone: 757-331-2300
Fax: 757-331-2501
e-mail: joerose@bcpcorp.com

Contact: Max Williams
Phone: 228-452-9486
Fax: 228-452-9495
e-mail: mwilliams@gcpstress.com
Website: www.gcpstress.com

For your East Coast and Caribbean projects contact:

For your Gulf Coast and Mississippi River projects contact:
The project involved driving piles in an historic area where building owners can be “sensitive” to vibrations.

We place a 100-percent butt weld on to the top section and drive the piles to grade. The only precaution we take is a pre-and post-construction survey, as well as vibration monitoring that is done during all pile driving.”

The limited working room on the urban site posed another challenge. King says the corner of the new building required piles to be driven 18 inches off an old building next door. The tight site also affected pile deliveries. “Steel piles were used because of access. I don’t believe we could have shipped 90 ft. of concrete test piles to the site.” The use of steel H-piles allowed piles to be installed in shorter lengths and King used this to his advantage.

LS3P’s Harkins says the largest obstacle his team faced and overcame was the fact that “all new construction in the old and historic district must meet the approval of the city’s board of architectural review. Meeting the programmed space requirements of the school, while working within the existing streetscape’s height and scale was a challenge. We overcame this by stepping the fourth floor back from the three floors below, along the front of the building, and breaking the scale down into three smaller components – the main four-story element, flanked on one side by the atrium, which provides the indoor-to-outdoor connections to the campus; and a three-story element on the other.”

Enjoyable and rewarding project

Still, obstacles or not, many of the team members have found this project to be immensely rewarding.

For Boyer, he says he loves starting with a vacant piece of property and then taking a team of contractors and “someone with a need for a building and [making it happen]. I love the saying, ‘if it was easy, anybody would be doing it!’”

Foshee concurs: “[What I enjoyed most was] just being part of the continuous development of a beautiful and historical city that is Charleston.”

Adds Harkins: “Creating a handsome and exciting new addition to what has been called one of the most beautiful campuses in the U.S. has been both satisfying and rewarding.”

As for King, he is proud of the fact that he was able to install the best product for the project owner. “We gave the owner a better foundation with the driven pile instead of the auger cast piles. The driven piles are all tested piles, so the owner can see what they get before it goes into the ground.”

▼
Drive, angle, drag, clam & lift with high line pull and hp performance

The 08 series... dedicated to your duty cycle needs
The 2005 PDCA Winter Roundtable will be held February 17–19, 2005 at the Francis Marion Hotel in beautiful Charleston, South Carolina.

The Roundtable is the premier event of the Pile Driving Contractors Association and is for contractors, geotechnical and structural engineers, owners, developers, suppliers, academics and anyone else who deals with and supports the pile-driving industry. An outstanding line up of speakers has been assembled to cover a variety of topics related to the driven pile.

The Winter Roundtable provides an opportunity for you to meet with your peers and industry leaders from around the country to discuss what is new in the industry, the needs of the industry, common problems and solutions. A wide range of exhibitors will be on-hand with information on a variety of products and services.

This year’s conference will be held at the Francis Marion Hotel, located in the heart of the historic downtown area. Many of the attractions of Charleston, including old homes and buildings, the harbor and other sites of historical significance are within walking distance from the hotel.

More information on the hotel can be found at www.francismarionhotel.com. Charleston information can be found at www.charlestoncvb.com. Room reservations can be made by calling (843) 722-0600. Ask for the PDCA Winter Roundtable Conference room block. The deadline for the guaranteed conference rate of $169 is January 26, 2005. Please make your room reservations early this year as hotel space is expected to be tight in Charleston that week due to other events in town. For help with your travel arrangements, contact PDCA’s travel coordinator Lorraine Engelman of Blue Ribbon Travel at (718) 767-0088.

Please plan to attend the PDCA Winter Roundtable. For more information and registration forms, visit the PDCA Web site at www.piledrivers.org. Don’t forget your spouse – PDCA has put together a program for them as well.

PRE-CONFERENCE SHORT COURSES - THURSDAY, FEBRUARY 17, 2005

9:00 – 5:00 PM

FHWA Driven Pile Inspectors Short Course

Peter Osborn and Jerry DiMaggio of the Federal Highway Administration teach a condensed one-day version of this course which will soon become a requirement in many states. Contractors and their personnel as well as engineers should consider attending. The course follows recommended FHWA and AASHTO specifications and practices and covers all areas of the driven pile construction process from fabrication and delivery to installation and testing.

9:00 – 5:00 PM

Deep Foundation Design, Construction, Testing & Quality Control Short Course

Mohamad Hussein, vice president of GRL Engineers and Jerry DiMaggio of the FHWA team up to teach a condensed one-day version of this course. This course will be of interest to design engineers and contractors wishing to increase their knowledge of the design process. Learn the fundamental principles and modern technologies aiding in the design, installation, testing and quality control of driven piles and cast-in-place shafts deep foundations. Emphasis will be placed on actual problem solving tools.
THURSDAY, FEBRUARY 17, 2005

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 – 9:00 AM</td>
<td>Short Course Registration</td>
</tr>
<tr>
<td>9:00 AM – 5:00 PM</td>
<td>Pile Inspectors Short Course. Peter Osborn & Jerry DiMaggio, FHWA.</td>
</tr>
<tr>
<td>9:00 AM – 5:00 PM</td>
<td>Deep Foundation Design, Construction, Testing & Quality Control Short Course. Mohamad Hussein, GRL Engineers & Jerry DiMaggio, FHWA.</td>
</tr>
<tr>
<td>8:00 – 9:00 AM</td>
<td>Noon – 2:30 PM PDCA Committee Meetings: Technical, Environmental, Communications</td>
</tr>
<tr>
<td>2:30 – 5:00 PM</td>
<td>PDCA Committee Meetings: Education, Market Development, Finance.</td>
</tr>
<tr>
<td>5:00 – 6:30 PM</td>
<td>Conference Registration</td>
</tr>
<tr>
<td>6:00 – 7:30 PM</td>
<td>Opening Reception</td>
</tr>
</tbody>
</table>

FRIDAY, FEBRUARY 18, 2005

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 – 8:30 AM</td>
<td>Continental Breakfast</td>
</tr>
<tr>
<td>8:30 – 9:15 AM</td>
<td>Annual Membership Meeting. PDCA President Randy Dietel and the Executive Committee will discuss results for 2004 along with plans for 2005 and beyond.</td>
</tr>
<tr>
<td>9:15 – 10:00 AM</td>
<td>How Pile Setup Saved $7M: A Case History of a Power Plant. Billy Camp, S&ME.</td>
</tr>
<tr>
<td>10:00 – 10:30 AM</td>
<td>Break in Exhibit Hall</td>
</tr>
<tr>
<td>10:30 – 11:15 AM</td>
<td>Effective Use and Interpretation of the Wave Equation Program and Dynamic Pile Monitoring. Jerry DiMaggio, Principal Geotechnical Engineer, FHWA. This presentation provides practical guidance on the application of these important engineering tools so as to avoid communication problems and contract disputes on small, large and extremely complex driven pile projects.</td>
</tr>
<tr>
<td>11:15 – 12:00 PM</td>
<td>Roundtable Discussion: Value Engineering Opportunities. Numerous cases exist where a driven-pile design would be more cost-effective than the existing cast-in-place design. A procedure for the development of value engineering proposals via partnerships of piling contractors and engineers will be discussed.</td>
</tr>
<tr>
<td>12:00 – 1:30 PM</td>
<td>PDCA Project of the Year Award Presentation and Luncheon.</td>
</tr>
<tr>
<td>1:30 – 2:15 PM</td>
<td>Driven Piles in Historic Charleston: A Case History. Ed Hajduk, WPC. Over 530 H-piles and 17 open-ended pipe piles were driven in and around an old building in Charleston, which experienced no structural damage from the vibrations. The test pile program, pre-condition survey and vibration and installation monitoring will be discussed.</td>
</tr>
<tr>
<td>2:15 – 2:30 PM</td>
<td>PDCA Noise & Vibration Database. PDCA's Environmental Committee discusses a new program for helping contractors and engineers understand, predict and model the effects of pile driving noise and vibrations.</td>
</tr>
<tr>
<td>2:30 – 3:00 PM</td>
<td>Break in Exhibit Hall</td>
</tr>
<tr>
<td>3:00 – 5:00 PM</td>
<td>What's New in Piling Materials? Industry representatives discuss what's new, cost and supply trends and present other information on various pile types including steel h-piles, pipe piles, sheet piles, concrete and timber piling and more.</td>
</tr>
<tr>
<td>5:30 – 7:00 PM</td>
<td>President's Reception</td>
</tr>
</tbody>
</table>

SATURDAY, FEBRUARY 19, 2005

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 – 8:30 AM</td>
<td>Continental Breakfast</td>
</tr>
<tr>
<td>8:30 – 9:15 AM</td>
<td>Installation of Driven Piles in Brownfield Sites. Dr. Gordon Boutwell, Soil Testing Engineers. The environmental challenges of pile installation in industrial sites are discussed and best practices are recommended.</td>
</tr>
<tr>
<td>9:15 – 10:00 AM</td>
<td>Pile driving for the Dundalk Marine Terminal. Mike Hart, Cianbro Bros.</td>
</tr>
<tr>
<td>10:00 – 10:30 AM</td>
<td>Break</td>
</tr>
<tr>
<td>10:30 – 11:15 AM</td>
<td>Roundtable Discussion: Tiebacks for Excavation Support Systems. This important part of the overall foundation project offers significant business opportunities for piling contractors. The discussion will be led by contractors with experience in this area. Come prepared to share your own experiences and tips for success.</td>
</tr>
<tr>
<td>11:15 – Noon</td>
<td>PDCA has developed its own set of recommended specifications. This session discusses the new specs and how to use them to improve communications with design engineers.</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>Adjourn</td>
</tr>
<tr>
<td>1:00 – 5:00 PM</td>
<td>Board of Directors Meeting</td>
</tr>
</tbody>
</table>
Over 40 years of quality products

Points & Splicers
For All Types of Piling

H • Pipe • Sheet • Timber • Composite

(800) 526-9047
(973) 773-8400
(973) 773-8442 fax

ASSOCIATED PILE & FITTING, LLC

Box 1048 • Clifton • New Jersey 07014
www.associatedpile.com • Email: apf@associatedpile.com

NEW SHEET PILE SPICERS

HARD DRIVING

JUST ADD AIR

A SHAKER

Parts Service

206/762-3550 pacoequip.com 800/678-6379

CONSTRUCTION EQUIPMENT PACO

PACO

206/762-3550 pacoequip.com 800/678-6379
Double-Acting Air/Steam Hammers

Double-acting air/steam hammers use compressed air or steam as the motive fluid to power the upward and downward ram stroke. Because power is applied on the down stroke these hammers typically operate at a higher number of blows per minute than a single-acting air/steam hammer and can provide a favorable amount of rated energy when compared to total hammer weight. However, they can lift off when motive fluid pressure is excessive; they rely on proper motive fluid pressure to reach rated energy, and they require closer attention and inspection during operation.

An external power source, such as an air compressor or a boiler supplies the pressurized motive fluid. A flexible hose carries the motive fluid from the source to the hammer. Operation with air or steam is similar. However, a change in motive fluid may change the specifications of the lubricant, lubricator, and hose line.

Figures 2a and 2b show the principal components of a double-acting air/steam hammer. In this hammer, when the ram nears the bottom of the stroke the lower valve opens to the motive fluid inlet and the upper valve opens to the exhaust. The motive fluid, delivered to the cylinder at near constant pressure, forces the piston and ram upward (Figure 2a). At some point during the upstroke the lower valve closes to the inlet and opens to the exhaust. At the same time, the upper valve opens to the inlet and closes to the exhaust (Figure 2b). The ram coasts upward against the pressure on top of the piston and then falls due to the effect of gravity and the force of the motive fluid above the piston. The ram moves downward and impacts the striker plate. Near the bottom of the stroke both valves return to their original positions (Figure 2a) and the cycle repeats. The position of the upper and lower valves is controlled by cams and their movement depends, in turn, on the position of the ram within the hammer assembly.

The energy rating of a double-acting air/steam hammer is an indication of the nominal kinetic energy of the ram just before impact. This kinetic energy depends on the weight of the ram, the stroke length, the upper area of the piston head, and the pressure time history above the piston head. The average effective pressure above the piston is not the gage pressure at the inlet, and cannot practically be determined in the field. Thus, the inspector cannot readily know the nominal kinetic energy of the ram based on observation or other simple inspection.

To assist the inspector, hammer manufacturers provide tables relating the rated energy to the hammer speed. The hammer speed is defined as the number of blows per minute, and can be measured by counting hammer blows during a suitable length of time.
The rated energy of the hammer at a specific blow rate is obtained by using the observed hammer speed and the manufacturer's tables.

Double acting air/steam hammers for pile driving are available with ram weights between 3,000 and 60,000 lbs. (1,300 and 27,000 kilograms). Maximum energy ratings typically range from 7000 to 180,000 ft-lbs (10 and 250 kilojoules). Because the ram of some double-acting air/steam hammers is enclosed, they can be operated submerged under water. For information on specific hammers refer to the manufacturer.

Some double-acting air/steam hammers are used without a hammer cushion between the striker plate and the drive cap. Thus, the ram may strike directly, steel to steel, on the striker plate anvil block which sits in the helmet. Other double-acting air/steam hammers have cushions of the same type as the single acting air/steam hammers and in this case the cushion has the same function in both hammer types.

Double-Acting Air/Steam Hammer Inspection Guide

1. Obtain the correct manufacturer's specifications for the hammer model in use.

2. Check the air or steam supply. Confirm that this supply meets the hammer specification. Also, verify that the length and diameter of the hose(s) are adequate to provide the required pressure and flow-volume at the hammer inlet. Hammer manufacturers provide guidelines for proper compressors and supply hoses.

3. Make a visual inspection of the anvil and hammer cushion if the hammer has one and note the cushion material type, condition, total thickness, and cross section dimensions. A simple sketch with dimensions is useful to record observations. Compare the collected information with the manufacturer's hammer cushion specifications. In most cases, the total thickness of the cushion and striker plate must match the manufacturer's specifications for proper hammer operation, and should be maintained.

4. On the hammer assembly, (hammer framework) measure and mark a reference point for use in observing the stroke length, if the ram is visible. Measure from a convenient point on the ram while supporting the ram by the drive cap and hammer cushion. When making more than one mark, consider color-coding. During driving, observe and record the stroke for comparison with the specified stroke. Proper hammer performance requires a proper stroke length.

5. Initial inspection of hammer operation often occurs on piles that will become part of the project foundation. Occasionally, a separate test pile is used to test the hammer and to establish driving procedures. Attempt to inspect hammer operation in circumstances that match routine driving at the final pile penetration. A double-acting air/steam hammer may have different impact velocity during hard driving (high blow counts) than during easy driving (low blow counts).

6. After the contractor has the hammer operating continuously, measure the hammer speed by counting the number of hammer blows in one minute. Compare the speed observed to the manufacturer's specifications. Repeat the hammer speed measurement several times to verify consistent hammer operation. If hammer speed measurement is required it should be determined at the end of driving for each pile.

7. Refer to the manufacturer's tables or charts to estimate the energy rating for the observed hammer speed. The energy rating estimated in this way may be compared with the specifications or requirements of the project. Do not use the tables or charts to estimate energy if the hammer speed is outside the range of the table or chart. Such extrapolations may not be valid.

8. During easy driving (low blow counts) the hammer speed is often less than it is during hard driving. This behavior is normal. When recording the hammer speed and stroke include the approximate pile penetration. These data are most useful if the pile penetration and blow count are close to their final values.

9. As the pile's driving resistance (blow count) increases, the ram stroke may increase slightly. At very high driving resistances, the ram stroke may increase and the upward traveling ram or piston may strike the hammer assembly (framework), causing it to bounce upward. This behavior is called racking and is readily detected by sight and sound. If racking occurs, the motive fluid flow should be reduced until racking stops. After proper adjustment to control racking, continue...
to monitor the hammer speed and use the manufacturer's data to estimate the energy rating.

10. During the driving of a pile, changes should not be made in the cushion. If it is necessary to insert a fresh pile cushion, it can be expected that the blow count will change, possibly substantially. The driving record should show where the new cushion was added and should contain a complete blow count record in order to show the effect of the new cushion on the driving resistance.

11. During driving the hammer hoist line should be slack, with the hammer's weight carried by the pile. Excessive tension in the hammer hoist line may be hazardous and will reduce the energy delivered to the pile. Leads should always be used.

12. Some manufacturers of double-acting air/steam hammers will void their equipment warranties if the penetration resistance consistently exceeds 10 blows per inch. This limit is sometimes exceeded for short periods, such as when piles are driven to end bearing on hard material. Nevertheless, the limit should be given due consideration in cases where hard driving occurs. It may be more desirable to use a larger hammer or a stiffer pile. Drivability should be investigated to try to avoid extremely high blow counts.

Hammer Trouble Shooting

Provision and maintenance of a properly functioning hammer is the responsibility of the contractor. However, the following information may be helpful when the hammer malfunctions.

1. Inability to attain the specified hammer speed (blows per minute) can result from inadequate motive fluid flow or pressure, a restricted or undersized hose, inadequate lubrication, poor valve timing, and worn hammer parts. Refer to the manufacturer for specifications and recommendations. Note: The motive fluid pressure at the hammer is best checked with a pneumatic needle gage installed as close to the hammer inlet as is safely possible.

2. Erratic hammer operation, such as skipping blows, can result from an improper hammer cushion thickness, inadequate lubrication, rubber hose lining or other foreign material in a valve, improper valve timing, or loose hammer fasteners (keys, nuts, etc). In cold or humid weather, ice may build up in the hammer near the exhaust and may cause irregular operation. If the motive fluid is steam, a cold hose or hammer may produce large amounts of condensate. Until such condensate exhausts or bleeds off, the ram's motion may be very irregular.

The above information has been reprinted by permission from the Pile Inspector's Guide to Hammers, copyright 1995, published first by the Deep Foundation Institute (DFI). Equipment availability may vary due to market conditions.
Junttan hydraulic pile driving rigs

...combines high efficiency and easy handling.

The Finnish Junttan is Europe’s leading manufacturer of hydraulic pile driving rigs. Junttan rigs can install all kinds of piles and profiles. The global service covers the customer’s individual needs from designing and manufacturing of rigs to after sales service.

Junttan’s ingenious technical solutions enable safe and effective piling:
- hydraulic pile arms for quick and safe pile handling
- excellent stability
- easy and quick start-up and transportation
- ergonomic safety tested cabin
- Junttan hammers with lower impact noise and less vibration
- powerful low-emission engines with sound proofing
- engines and winches adaptable to different size Junttan hammers and tools, e.g. vibrator and pre-drill rotary head
Contractor Members

A.S. Horner Inc.
David Krueger
P.O. Box 9105
Albuquerque, NM 87119
Ph: (505) 873-1577
Fax: (505) 873-3519
Email: dkrueger@ashorner.com
Internet: www.ashorner.com

Will drive piles in: AZ, CO, KS, NM, OK, TX, UT.

All American Underpinning and Shoring
Michelle Lusader
P.O. Box 72566
Roselle, IL 60172
Ph: (630) 213-3927
Email: aunderpinning@aol.com
Internet: www.allamericanunderpinning.com

Will drive piles in: II, WI, IN, MI.

Atlas Foundation Company
Bad Straunard
P.O. Box 117
Rogers, MN 55374
Ph: (207) 679-2354
Fax: (207) 679-2522
Pittsfield, ME 04967
P.O. Box 1000
Cianbro

Blakeslee, Arpaya and Chapman
David R. Chapman
200 North Branford Road
Branford, CT 6405
Fax: (203) 483-2947
Fax: (203) 488-3997
Email: dchapman@bac-inc.com

Will drive piles in: CT, MA, NY, RI.

Boh Bros. Construction Co., LLC
Dale Biggers
P.O. Drawer 53266
New Orleans, LA 70153
Fax: (504) 821-2400
Fax: (504) 821-0714
Email: dbiggers@bohbro.com
Internet: www.bohbro.com

Will drive piles in: AL, AR, GA, MS, FL, LA, MO, KY, SC, TX.

Bo-Mac Contractors Inc.
Robert “Lynn” Johnson, Jr.
P.O. Box 5386
Beaumont, TX 77726
Ph: (409) 842-2125
Fax: (409) 840-4754
Email: ljohnson@bo-mac.com
Internet: www.bo-mac.com

Will drive piles in: LA, TX.

Build Inc.
Richard Stroman
181 North 200 West #1
Bountiful, UT 84010
Ph: (801) 295-1300
Fax: (801) 292-9581
Email: build@aros.net

Will drive piles in: AZ, CA, CO, ID, MT, NM, NV, OR, TX, UT, WA, WY.

Bunnell Foundation Inc.
Richard Bunnell
3033 NW North River Dr.
Miami, FL 33142
Ph: (305) 633-3369
Fax: (305) 633-3381
Email: bunnell@aros.net

Will drive piles in: FL and Bahamas.

C.L. Benton & Sons Inc.
Carson Benton
706 38th Ave. N.
Myrtle Beach, SC 29577
Ph: (843) 448-3116
Fax: (843) 626-0170
Email: carson@clbenton.com

Will drive piles in: GA, NC, SC.

Cajun Constructors
Mike Moran
P.O. Box 104
Baton Rouge, LA 70821
Ph: (225) 753-5857
Fax: (225) 282-0074
Email: mikem@cajunusa.com

Will drive piles in: AL, AR, GA, FL, LA, MS, OK, TN, TX.

Cape Romain Contractors
Anthony T. Dupre, Jr.
660 Cape Romain Road
Wando, SC 29492
Ph: (843) 884-5167
Fax: (843) 884-0516
Email: bobm@capersonmaincontractors.com

Will drive piles in: FL, GA, NC, SC.

Cianbro
Tom Rukavina
P.O. Box 1000
Pittsfield, ME 04967
Ph: (207) 679-2354
Fax: (207) 679-2354
Email: trukavina@cianbro.com

Will drive piles in: CT, FL, MA, MD, ME, NH, NY, PA, RI, VA.

Ciport S.A.
Rafael C. Miranda
C.E. Las Camaras, Office 702
P.O. Box 09-11282
Guayaquil, Ecuador
Ph: (593) 426-80485
Fax: (593) 426-80502
Email: rmiranda@ciport.com
Internet: www.ciport.com
Will drive piles in: Ecuador.

Continental Construction Co.
Rodney Waits
5646 Shelby Oaks Drive
Memphis, TN 38134
Ph: (901) 382-4070
Fax: (901) 388-2534
Email: rwaits@continentalconst.com

Will drive piles in: AL, AR, FL, GA, IA, IL, IN, KS, KY, LA, MO, MS, NC, NE, OH, OK, SC, TN, TX, VA, WV, and Puerto Rico.

Cooper Crane & Rigging
Russ Barnes
P.O. Box 2540
Novato, CA 94948
Ph: (415) 892-2778
Fax: (415) 892-9229
Email: russ@coopercrane.com
Internet: www.coopercrane.com
Will drive piles in: CA, WA.

CS Marine Constructors
Casey Stockton
P.O. Box 2193
Vallejo, CA 94592
Ph: (707) 562-4100
Fax: (707) 562-4106
Email: casey@csmarine.com
Internet: www.csmarine.com
Will drive piles in: CA.

DeWitt Construction Inc.
Wayne DeWitt
13909 N.E. 10th Ave.
Vancouver, WA 98685
Ph: (360) 576-8754
Fax: (360) 574-8599
Email: dewittcons@aol.com

Will drive piles in: CA, WA, OR, AK, ID, MT, UT, OR.

E. S. Wagner
Edward W. Kitzman
840 Patchen Rd.
Oregon, OH 43816
Ph: (419) 691-8651
Fax: (419) 691-2429
Email: okitzman@eswagner.com
Will drive piles in: IN, KY, MI, OH, PA, NC, TN, WV.

East Bay Construction Corp.
Joseph Burket
512 W. Farmington Rd.
Virginia Beach, VA 23454
Ph: (757) 463-1735
Fax: (757) 463-1736
Email: T_Tug@hotmail.com
Will drive piles in: VA.

Ed Waters & Sons Contracting Co. Inc.
Wayne E. Waters
6467 Greeneland Road
Jacksonville, FL 32258
Ph: (904) 268-4419
Fax: (904) 260-9379
Email: ewe2150@aol.com
Will drive piles in: GA, FL, SC.

Edward E. Gillen Co.
Thomas Miller
218 W. Becher St.
Milwaukee, WI 53207
Ph: (414) 769-3120
Fax: (414) 769-3135
Email: inform@gillenco.com
Internet: www.gillenco.com
Will drive piles in: IL, MA, WI.

ETI Corporation
George Ellenson
P.O. Box 280
Lebanon, ME 04229
Ph: (207) 457-1895
Fax: (207) 457-1030
Email: stillwaters@metrocast.net
Will drive piles in: ME, MA, NH, VT.

F&W Construction Co. Inc.
Nigel E. Wells
P.O. Box 1549
Osask, AR 72061
Ph: (501) 299-1520
Fax: (334) 299-6616
Email: nwells@fandwconst.com
Will drive piles in: AL, FL, GA, MS, NC, SC, TN.

V. C. Korneffel
C. G. Korneffel
E. C. Korneffel Company
2691 Veterans Parkway
Trenton, MI 48183
Ph: (734) 676-2131
Fax: (734) 676-0788
Email: info@korneffel.com
Internet: www.korneffel.com
Will drive piles in: PA, OH, IN, IL, MI, WI.
Fenton Rigging & Contracting Inc.
Robert J. Wine, Jr.
2150 Langston Farm Rd.
Cincinnati, OH 45237
Ph: (513) 631-5500
Fax: (513) 631-4361
Email: bwitte@fentonrigging.com
Internet: www.fentonrigging.com
Will drive piles in: AL, AR, FL, GA, IA, IL, IN, KS, KY, LA, MI, MO, MS, NC, ND, NE, NJ, OH, OK, PA, SC, SD, TN, TX, VA.

Hal Jones Contractor Inc.
Paul C. Kirkland
770 Talleyrand Ave.
Jacksonville, FL 32202
Ph: (904) 355-3885
Fax: (904) 355-7648
Email: pkirkland@wwgmc.com
Will drive piles in: FL, GA.

Halverson Construction Co. Inc.
Larry Antonacci
P.O. Box 6039
Springfield, IL 62708
Ph: (217) 753-0027
Email: larrya@halversonconstruction.com
Internet: www.halversonconstruction.com
Will drive piles in: IA, IN, IL, KY, MO.

Harpers Structures Inc.
Chuck Kethel
1613 S. Defiance St. / P.O. Box 70
Archbold, OH 43502
Ph: (419) 445-8110
Fax: (419) 445-8212
Email: johnsisola@mbholdings.com
Internet: www.mlbrbrosconst.com/bsi.html
Will drive piles in: IN, MI, OH.

Hawaiian Dredging Construction Company
Mel Miyamoto
614 Kapahulu Avenue
Honolulu, HI 96815
Ph: (808) 735-3211
Fax: (808) 735-7413
Internet: www.hawaiandredging.com
Will drive piles in: HI.

Herbert F. Darling Inc.
Herbert F. “Buck” Darling, III
131 California Drive
Williamsville, NY 14221
Ph: (716) 632-1125
Fax: (716) 632-0705
Email: piling@fl8 Darling.com
Will drive piles in: NY-except NYC area, OH-Northeast, PA-northern and western.

J.A. Walder Inc.
J.A. Walder, Jr.
P.O. Box 2047
Ashland, VA 23005
Ph: (804) 796-3650
Fax: (804) 796-5032
Email: email@walder.com
Internet: www.walder.com
Will drive piles in: MD, VA, NC, SC.

Johnson Bros. Corp.
Derek Fogt
2617 A Edelborn Avenue, #A
Metairie, LA 70002
Ph: (504) 779-5686
Fax: (504) 779-5692
Email: dfogt@johnson-bros.com
Internet: www.johnson-bros.com
Will drive piles in: AL, FL, IA, LA, MN, MS, MT, ND, SD, TX, WI.

Jordan Pile Driving Inc.
D. R. Jordan
P.O. Drawer 3004
Mobile, AL 36652
Ph: (251) 432-5000
Fax: (251) 438-4666
Email: drjordan@jordangroup.com
Internet: http://www.jordangroup.com
Will drive piles in: AL, FL, GA, LA, MS, TN.

Jordan Pile Driving Inc.
D. R. Jordan
P.O. Drawer 3004
Mobile, AL 36652
Ph: (251) 432-5000
Fax: (251) 438-4666
Email: drjordan@jordangroup.com
Internet: http://www.jordangroup.com
Will drive piles in: AL, FL, GA, LA, MS, TN.

Kiewit Pacific Co.
David A. Jack
5000 Marsh Drive
Concord, CA 94520
Ph: (925) 686-3030
Fax: (925) 687-5143
Email: david.jack@norcal.kiewit.com
Internet: www.kiewit.com
Will drive piles in: CA, WA, OR, AK, NV, HI, AZ, ID, MT, UT.

L.H. Bolduc Co. Inc.
Robert Werness
649 W. Garfield St. / P.O. Box 815
Anoka, MN 55303
Ph: (763) 427-4330
Fax: (763) 427-4012
Email: lbolduc@awwest.net
Will drive piles in: IA, IL, MN, ND, NE, SD, WI.

Marine Construction Inc.
Ken Hanjes
208 Michigan Ave.
Folly Beach, SC 29439
Ph: (843) 588-2882
Fax: (843) 588-2012
Will drive piles in: SC.

Max J. Kuney Company
Karsten Olson
P.O. Box 4008
Spokane, WA 99220
Ph: (509) 535-0651
Fax: (509) 534-6828
Email: karsten@maxkuney.com
Internet: www.maxkuney.com
Will drive piles in: ID, MT, OR, WA.

MB Western Industrial Contracting Co.
James S. Bosley
P.O. Box 5399
Pasadena, TX 77508
Ph: (281) 487-5757
Fax: (281) 487-5726
Email: steveb@mbwestern.com
Internet: www.mbwestern.com
Will drive piles in: TX.

MCM Construction Inc.
James A. Carter
6413 32nd Street
North Highlands, CA 95660
Ph: (916) 334-1221
Fax: (916) 334-0562
Email: jcarter@mcmconstructioninc.com
Internet: www.mcmconstructioninc.com
Will drive piles in: AZ, NV, OR.
McMullen & Pitz Construction Co.
Erich Pitz
17 Maritime Drive
Manitowoc, WI 54221
Ph: (920) 682-0131
Fax: (920) 682-1099
Email: pitz@lakefield.net
Will drive piles in: WI.

MidAtlantic Piling
William J. Lytle
586 Industrial Road
Glen Rock, PA 17327
Ph: (717) 227-2492
Fax: (717) 227-2393
Email: blytle1965@aol.com
Internet: midatlanticpiling.com
Will drive piles in: DC, MD, PA, VA.

Misener Marine Construction Inc.
Mark LaFon
5600 West Commerce St.
Tampa, FL 33616
Ph: (813) 831-7498
Fax: (813) 831-0081
Email: rcweldingfab@yahoo.com
Fax: (308) 635-7177
Ph: (308) 635-0081
Gering, NE 69341
880 E. Country Club Rd.
Craig L. Carlson
Will drive piles in: OH.

Mobeley Contractors Inc.
Ronald F. Mobeley
P.O. Box 150
Morriston, AR 72110
Ph: (501) 354-2510
Fax: (501) 354-1862
Will drive piles in: AR.

Murphree Bridge Corporation
Tom Murphree
P.O. Drawer 547
Troy, AL 36081
Ph: (334) 566-0756
Fax: (334) 566-0757
Email: mubridge@bellsouth.net
Will drive piles in: GA, NC, SC.

O’Quinn Marine Construction
Robert O’Quinn
95 Sheppard Rd.
Beaufort, SC 29907
Ph: (843) 522-3313
Fax: (843) 522-3138
Will drive piles in: SC.

P+H Construction Corp.
Pat Hensley
80 St. Michael St., Suite 203
Mobile, AL 36602
Ph: (251) 433-6716
Fax: (251) 433-6719
Email: phconst1@aol.com
Will drive piles in: AL.

Palmetto Pile Driving Inc.
J. Harry Robbins, Jr.
P.O. Box 70986
Charleston, SC 29415
Ph: (843) 577-0545
Fax: (843) 577-0547
Email: PalmettoPile@aol.com
Will drive piles in: GA, NC, SC.

Parker Marine Contracting Corp.
John T. Parker
68 Braswell St. / P.O. Box 30651
Charleston, SC 29405
Ph: (843) 853-7615
Fax: (843) 853-6263
Email: johnp@parkermarine.net
Will drive piles in: GA, NC, SC.

Phoenix Marine Co.
John A. Keely
46 Highway 36
Keyport, NJ 07735
Ph: (732) 888-9336
Fax: (732) 888-5544
Email: phoenix@netlabs.net
Will drive piles in: NY, NJ.

Pile Drivers Inc.
John King
4530 Hwy. 162
Charleston, SC 29449
Ph: (843) 763-7736
Fax: (843) 763-7974
Email: kingpiledriver@aol.com
Will drive piles in: GA, NC, SC.

Piling Inc.
Randy Dietel
P.O. Box 1847
Charleston, SC 29405
Ph: (843) 769-8244
Fax: (843) 769-5630
Email: dpenoyer@repdemo.com
Internet: www.repdemo.com
Will drive piles in: DE, MD, NJ, PA.

Pile Drivers Inc.
Randy Dietel
P.O. Box 1847
Charleston, SC 29405
Ph: (843) 763-7736
Fax: (843) 763-7974
Email: kingpiledriver@aol.com
Will drive piles in: GA, NC, SC.

R.L. Morrison & Sons Inc.
Michael H. Morrison
623 Morrison Street
McClellanville, SC 29458
Ph: (843) 887-3261
Fax: (843) 887-3208
Email: rls@tds.net
Will drive piles in: GA, NC, SC.

Reiman Corp.
Tom Reiman
P.O. Box 1007
Cheyenne, WY 82003
Ph: (307) 632-8971
Fax: (307) 632-8972
Email: trr@reimancorp.com
Internet: reimancorp.com
Will drive piles in: NM, CO, MT, WY, NE, SD.

Richard E. Pierson Construction Co. Inc.
Douglas G. Penoyer
P.O. Box 430
Woodstown, NJ 08098
Ph: (856) 769-8244
Fax: (856) 769-5630
Email: dpenoyer@repdemo.com
Internet: www.repdemo.com
Will drive piles in: DE, MD, NJ, PA.

Richard Goettle Inc.
Larry Rayburn
12071 Hamilton Ave.
Cincinnati, OH 45231
Ph: (513) 828-8107
Fax: (513) 828-8107
Email: lrayburn@goettle.com
Internet: goettle.com
Will drive piles in: All States.

River Pile & Foundation Co. Inc.
Simeon Beer
6 Executive Plaza
Yonkers, NY 10701
Ph: (914) 969-2424
Fax: (914) 969-3088
Will drive piles in: CT, NY, NJ.

R.L. Morrison & Sons Inc.
Michael H. Morrison
623 Morrison Street
McClellanville, SC 29458
Ph: (843) 887-3261
Fax: (843) 887-3208
Email: rls@tds.net
Will drive piles in: GA, NC, SC.

Signor Enterprises
Rusty Signor
8820 Madrone Ranch Trail
Austin, TX 78734
Ph: (512) 264-8301
Fax: (512) 264-8301
Email: rustysigner@hotmail.com
Will drive piles in: TX.

Simpson & Brown Inc.
Bob Anttonen
119 North Ave.
Cranford, NJ 07016
Ph: (908) 276-2776
Fax: (908) 276-2776
Email: ranttonen@simpsonandbrown.com
Will drive piles in: NJ, PA, NY, CT.

Spark Contractors
Samuel Ruga
1307 14th Avenue
Dorothy, NJ 08317
Ph: (609) 476-2175
Fax: (609) 476-2702
Will drive piles in: NJ.

Spearin, Preston and Burrows Inc.
Gerard A. Neumann, Jr.
3365 Richmond Terrace
Staten Island, NJ 10303
Ph: (718) 720-8029
Fax: (718) 723-9326
Email: ganeumann@spearin.com
Will drive piles in: NY, NJ, DE, MD, VA, PA, CT.

Stroer & Graff Inc.
Dave Graff
1830 Phillips Lane
Antioch, CA 94509
Ph: (925) 778-0200
Fax: (925) 778-6766
Ph: (718) 778-6766
Will drive piles in: CA, WA, OR, NV.

Subsurface Constructors Inc.
John B. Morgan
110 Angelica Street
Fort Motte, SC 29043
Ph: (803) 765-4111
Fax: (803) 765-4111
Will drive piles in: KY, GA, AL, FL.

Subsurface Constructors Inc.
John B. Morgan
110 Angelica Street
Fort Motte, SC 29043
Ph: (803) 765-4111
Fax: (803) 765-4111
Will drive piles in: KY, GA, AL, FL.

Spearin, Preston and Burrows Inc.
Gerard A. Neumann, Jr.
3365 Richmond Terrace
Staten Island, NJ 10303
Ph: (718) 720-8029
Fax: (718) 723-9326
Email: ganeumann@spearin.com
Will drive piles in: NY, NJ, DE, MD, VA, PA, CT.

Stroer & Graff Inc.
Dave Graff
1830 Phillips Lane
Antioch, CA 94509
Ph: (925) 778-0200
Fax: (925) 778-6766
Ph: (718) 778-6766
Will drive piles in: CA, WA, OR, NV.

Subsurface Constructors Inc.
John B. Morgan
110 Angelica Street
Fort Motte, SC 29043
Ph: (803) 765-4111
Fax: (803) 765-4111
Will drive piles in: KY, GA, AL, FL.

Subsurface Constructors Inc.
John B. Morgan
110 Angelica Street
Fort Motte, SC 29043
Ph: (803) 765-4111
Fax: (803) 765-4111
Will drive piles in: KY, GA, AL, FL.
PDCA Membership Listings 2004

- **Susquehanna Valley Construction**
 Wayne M. Schug
 175 Lamont Road
 New Cumberland, PA 17070
 Ph: (717) 774-7461
 Fax: (717) 774-1844
 Email: svccorp@aol.com

- **Veit & Company Inc.**
 Greg Boelke
 14000 Veit Place
 Rogers, MN 55374
 Ph: (763) 428-2242
 Fax: (763) 428-8348
 Email: gboelke@veitcompanies.com
 Internet: www.veitcompanies.com

- **Swalling Construction Co.,**
 Mike Swalling
 P.O. Box 101039
 Anchorage, AK 99510
 Ph: (907) 274-6002
 Email: mswalling@swalling.com

- **Texas Gulf Construction Co. Inc.**
 John Kelsor
 P.O. Box 2110
 Galveston, TX 77553
 Ph: (409) 740-0268
 Email: johnw@apevibro.com

- **Texas Gulf Construction Co. Inc.**
 John T. Dillon
 333 Gros Blvd.
 Herkimer, NY 13350
 Ph: (315) 866-3199
 Email: jdlion421@aol.com

- **Bay Machinery Corp.**
 Jim Arkin
 P.O. Box 70430
 Richmond, CA 94807
 Ph: (510) 236-9000
 Fax: (510) 236-7212
 Email: jim@baymachinery.com
 Internet: www.baymachinery.com

Products & Services Offered:
- Rental and sales of vibratory equipment, pile leads, top drive drills, diesel hammers, hydraulic impact hammers, air hammers, and crane rental and track drills and tie-back machines.

- **Bayshore Concrete Products**
 Chad A. Saunders
 P.O. Box 230
 Cape Charles, VA 23310
 Ph: (800) 331-2300
 Fax: (757) 331-2501
 Email: csaunder@bcpcorp.com
 Internet: www.bcpcorp.com

Products & Services Offered:
- Manufacturer of prestressed concrete piles.

- **Bermingham Foundation Solutions**
 Patrick Bermingham
 600 Ferguson Ave. North
 Hamilton, ON L8L 4Z9
 Ph: (800) 668-9432
 Fax: (905) 528-6187
 Email: pbermingham@berminghammer.com
 Internet: www.berminghammer.com

- **Brittex International Inc.**
 Balor Moore
 5505 Almeda Genoa Road
 Houston, TX 77048
 Ph: (713) 991-6107
 Email: balor@brittexpipe.com

Products & Services Offered:
- Paint and fabricate steel pipe piles to length; steel line pipe to 48 inches and roll and weld to 96 inches. Supplier of steel pipe, new & used; welded to length, sandblasting, painting, fabrication.
CDS Manufacturing
Clayton Sembler
441 South Virginia Street
Quincy, FL 32351
Ph: (850) 875-4651
Fax: (850) 875-4660
Email: cdsafg@earthlink.net
Internet: www.cdsmanufacturing.com

Products & Services Offered:
Concrete piles, trucking.

CMRM
John Hammill
950 Industrial Rd.
Cambridge Ontario CANADA N3H4W1
Ph: (519) 650-2222
Fax: (519) 650-2223
Email: jhammill@rollformgroup.com

Products & Services Offered:
Cold formed steel sheet piling, hot rolled steel sheet piling, waterway barrier, sealable sheet piling, high modulus sheet piling, "H" bearing piling, pipe pile, structural, tie rods and hardware, highway guardrail.

Cox Utility / Carolina Poles
Andrea Edwards
P.O. Box 70
Eutawville, SC 29048
Ph: (803) 492-7728
Fax: (803) 492-7942
Email: andreaecpi@aol.com

Products & Services Offered:
Vinyl sheet piles, timber piles & treated lumber.

D.P. Nicoli Inc.
David P. Nicoli
19600 Cipole Road
Tulanin, OR 97062
Ph: (503) 612-8200
Fax: (503) 692-1700
Email: dnicoli@dpnicoli.com

Products & Services Offered:
Steel, H-piles, pipe piles, sheet piles, pile accessories and beams.

Drive-Con Inc.
Terry Lee
8225 Washington Blvd.
Jessup, MD 20794
Ph: (410) 799-8963
Fax: (410) 799-5264
Email: drvcon@aol.com
Internet: www.drive-con.com

Products & Services Offered:
Rental, sales and service of pile driving equipment.

Durabond Steel Corp.
Brad Norris
P.O. Box 518
Export, PA 15632
Ph: (724) 327-0280
Fax: 724-327-0113
Internet: durabond.com

Products & Services Offered:
Steel sheet piles.

Ellis & Associates
Greg A. Edmonds
7064 Davis Creek Rd.
Jacksonville, FL 32256
Ph: (904) 880-0960
Fax: (904) 880-0970
Email: ellis@ellisassoc.com

Products & Services Offered:
Analysis, design, testing, vibration monitoring, surveys, consulting, geotechnical engineers, pile monitoring, pile driving analyzer (PDA) testing.

Equipment Corp. of America
Roy Kern
P.O. Box 306
Corapolis, PA 15108
Ph: (412) 264-4480
Fax: (412) 264-1158
Email: arkern@ecanet.com
Internet: ecanet.com

Products & Services Offered:
Rental, sales, vibratory drivers/extractors, fixed/swing leads, jet pumps, drills, cushion materials, pile driving leads, cutter head, drill bits, drive caps, off shore leader system, drilling supplies, pile hammers-vibratory, diesel, hydraulic, air/stea.

Flexicore of Texas
Joe Phillips
P.O. Box 450049
Houston, TX 77245
Ph: (888) 359-4627
Fax: (214) 437-8913
Email: josephp@flexicoretx.com

Products & Services Offered:
Concrete sheet piles.

Florida Pipe & Steel
Vince Bianco
6685 Forest Hill Blvd. Suite 207
W. Palm Beach, FL 33413
Ph: (561) 642-1811
Fax: (561) 642-7478
Email: sales@floridapipe.com
Internet: www.steel4sale.com

Products & Services Offered:
Steel beams, pipe pile, steel fabrication.

Frank Black Pipe & Supply
Jerry Johnson
1375 17th Ave.
McPherson, KS 67460
Ph: (620) 241-2582
Fax: (620) 241-8080

Products & Services Offered:
Pile pile.

Gate Concrete Products Co.
Earl Shump
402 Hecksher Dr.
Jacksonville, FL 32226
Ph: (904) 757-0860
Fax: (904) 751-5435
Email: eshump@gatepetro.com

Products & Services Offered:
Concrete piles, sheet piles (concrete).

Geokon Inc.
Michael McDonough
48 Spencer Street
Lebanon, NH 03766
Ph: (603) 448-1562
Fax: (603) 448-3216
Email: tony@geokon.com
Internet: www.geokon.com

Products & Services Offered:
Pile monitoring.

Geotechnics
Larry Wetzal
544 Braddock Ave.
East Pittsburgh, PA 15112
Ph: (412) 823-7600
Fax: (412) 823-8999
Email: lwetzel@geotechnics.net
Internet: www.geotechnics.net

Products & Services Offered:
Deep foundation testing services.

GRL Engineers Inc.
Frank Rausche
4535 Renaissance Pkwy.
Cleveland, OH 44128
Ph: (216) 831-6131
Fax: (216) 831-0916
Email: frank@pile.com

Products & Services Offered:
Dynamic pile testing, wave analysis, sonic and ultrasonic integrity testing.

Gulf Coast Pre-Stress Inc.
Max J. Williams
P.O. Box 825
Pass Christian, MS 39571
Ph: (228) 452-9486
Fax: (228) 452-9495
Email: mwilliams@gcpprestress.com
Internet: http://www.gcpprestress.com

Products & Services Offered:
Precast prestressed concrete piles 10 inches square to 42 inches square, to 36-inch, 54-inch, and 66-inch cylinder pile, precast prestressed concrete sheet piles.

GZA GeoEnvironmental, Inc
Bradford W. Roberts
One Edgewater Dr.
Norwood, MA 02062
Ph: (781) 278-3840
Fax: (781) 278-3701
Email: broberts@gza.com

Products & Services Offered:
Dynamic pile testing, instrumentation, vibration monitoring, testing, geotechnical, design, consulting.

Hartman Engineering
Richard Hartman
4910 Ranson Rd
Clarence, NY 14031
Ph: (716) 759-2900
Fax: (716) 759-2668
Email: rhartman@hartmanengineering.com
Internet: hartmanengineering.com

Products & Services Offered:
Consulting, cofferdam design.

ICE-International Construction Equipment Inc.
Kurt Saurf
301 Warehouse Drive
Matthews, NC 28104
Ph: (800) 418-9281
Fax: (704) 821-8201
Internet: www.iceusa.com

Products & Services Offered:
Vibratory pile hammers, diesel impact hammers, hydraulic impact hammers, top drive augers, bored pile drill rigs, tie-back drill rigs, pile driving leads, drive caps, pile driving accessories, drilling accessories, sales and rentals.
IHC Hydrohammer B.V.
Gregor Jonker
6, Smitweg, 2961 AW, Box 26
Kinderdijk, The Netherlands, 2960AA
Ph: 31-78-69-10302
Fax: 31-78-69-10304
Email: g.jonker@ihcfe.com
Internet: www.ihcfe.com

Products & Services Offered:
Manufacturer of hydraulic pile driving hammers (Hydrohammer), hydraulic piling rigs, (Fundex), auger drives, vibratory hammers, leads, air/steam operated hammers (Vulcan).

International Construction Services Inc.
Brian Land
P.O. Box 15598
Pittsburgh, PA 15244
Ph: (412) 788-6430
Fax: (412) 788-9180
Email: islct@nb.net

Products & Services Offered:
Coatings & chemicals, steel pipe piles, steel sheet piles.

J.D. Fields & Co. Inc.
Stan Fisher
P.O. Box 21842
Houston, TX 77218
Ph: (281) 588-7199
Fax: (281) 870-9918
Email: sfisher@jdfields.com
Internet: jdfields.com

Products & Services Offered:
Rental of sheet piling, sales of H-pile, sheet pile, and steel pipe.

Junttan OY
Pentti Heinonen
P.O. Box 1702
Kuopio FIN-70701 FINLAND, Ph: 358-017-2874400
Fax: 358-017-2874411
Email: pentti.heinonen@junttan.com
Internet: www.junttan.com

Products & Services Offered:
Manufacturer of hydraulic hammers and piling and drilling rigs.

Kentucky State District Council of Carpenters
Steve Barger
632 Comanche Trail
Frankfort, KY 40601
Ph: (502) 875-7474
Fax: (502) 875-3409
Email: sbarger@ksdcc.org

Products & Services Offered:
Labor organization.

Koppers Inc.
Donald R. Surrency
200 N.W. 23rd Ave.
Gainesville, FL 32609
Ph: (352) 376-5144
Fax: (352) 371-4657
Email: suercnyrd@koppers.com
Internet: www.koppers.com

Products & Services Offered:
Timber piles.

L.B. Foster Company
Don Vukmanic
415 Holiday Drive
Pittsburgh, PA 15220
Ph: (412) 928-3487
Fax: 412-928-3427
Email: dvukmanic@lbfosterco.com
Internet: www.foster-piling.com

Products & Services Offered:
Sales, cranes, fixed/swing leads, sheet steel piling, H-beams and foundation pile, and fender systems.

Liebherr Nzening Crane Co.
Wolfgang Herzog
1400 E. North Belt, Suite 160
Houston, TX 77032
Ph: (281) 219-7313
Fax: (281) 219-7134
Email: wolfgang.herzog@lnh.liebherr.com
Internet: www.liebherr.com

Products & Services Offered:
Sales, cranes, fixed/swing leads, sheet pile, H bearing piling, sheet piles, drills, composite pile, pile driving leads, off shore leader system, drilling supplies, dynamic compactor.

Liedtka Trucking Inc.
Phillip Liedtka
110 Patterson Ave.
Trenton, NJ 08630
Ph: (609) 586-2080
Fax: (609) 890-9333

Products & Services Offered:
Trucking services.

Link-Belt Construction Equip. Co.
Pat Collins
2651 Palumbo Dr. / P.O. Box 13600
Lexington, KY 40509
Ph: (859) 263-5200
Fax: (859) 264-6351
Email: pcollins@linkbelt.com
Internet: www.linkbelt.com

Products & Services Offered:
Cranes.

Mandal Pipe Co.
Bill Buckland
P.O. Box 2566
Lilburn, GA 30048
Ph: (770) 925-8885
Fax: (770) 925-8803
Email: BillBuckland@mandalpipe.com
Internet: www.mandalpipe.com

Products & Services Offered:
Large diameter steel pipe, H-Piles, pipe piling, cutting, welding, plate attachment, sandblasting, and painting. Mill direct shipments.

Menck GmbH
Dr. Bernhard Bruggaier
P.O. Box 1461
24562 Kaltenkirchen GERMANY, Ph: [49] 49-041919110
Fax: [49] 490419191110
Internet: www.menck.com

Products & Services Offered:
Design, manufacture and sell offshore pile driving hammers and on-land pile driving hammers.

MG&B
Mark Greenberg
P.O. Box 664
Mandeville, LA 70470
Ph: (800) 256-2185
Fax: (985) 893-5222
Internet: mg7b@aol.com

Products & Services Offered:
Trucking Services.

Mississippi River Equipment Company
John Wagwestuck
P.O. Box 249
Norco, LA 70079
Ph: (985) 764-1194
Fax: (985) 764-2185
Email: jw@pm-usa.com
Internet: www.mrecco.com

Products & Services Offered:
MKT-Vulcan-Hamortex dealer rental-sales of PDE & accessories. Dawson dealer.

Mississippi Valley Equipment Co.
Mike Whisler
1198 Pershall Road
St. Louis, MO 63137
Ph: (314) 869-8600
Fax: (314) 869-6862
Email: mwhisler@mvve-stl.com
Internet: www.mvve-stl.com

Products & Services Offered:
Rentals, sales, parts and service of MKT pile driving equipment and hydraulic augers. Distributor for IHC Hydrohammers, Vulcan air hammers, and Mait hydraulic drill rigs. Custom fabrication, hydraulic repair work, repair on all pile driving equipment.

Monotube Pile Corp.
Samuel Kosa
P.O. Box 7339
Canton, OH 44705
Ph: (330) 454-6111
Fax: (330) 454-1572
Email: monotube@raex.com
Internet: www.monotube.com

Municon Consultants
Barry C. Roth
1300 22nd Street, Suite A
San Francisco, CA 94107
Ph: (415) 641-2570
Fax: (415) 282-4097
Email: municon@municon.net

Products & Services Offered:
Vibration monitoring of pile driving; also inclinometer, piezometer, tilt meter monitoring; pre construction photo/video surveys.

National Ventures Inc.
Glenn Lockie
264 Cazneau Ave.
Sausalito, CA 94965
Ph: (415) 331-2760
Fax: (415) 331-7261
Email: glockie@pilesplc.com
Internet: www.pilesplc.com

Products & Services Offered:
Sure-lock splice for prestressed concrete piles. All sizes and shapes of piles. Fast, easy and reliable. Used for 30 years.

Nixxon Inc.

National Ventures Inc.

Pile Processors Inc.

Pile Splice Systems Inc.

Pile Service Company

Pile Splicing Services

Pile Splice Suppliers

Pile Splicer

Pile Test Services

PDCA Membership Listings 2004
PDCA Membership Listings

NationWide Utility Poles & Supply Inc.
Phil S. Myers
P.O. Box 130
Brierfield, AL 35035
Ph: (205) 926-1887
Fax: (205) 926-7495
Email: pmyers@nwpoles.com
Internet: www.nwpoles.com

Products & Services Offered:
Timber piling.

Naylor Pipe Co.
Mike Griffin
1230 - 92nd St.
Chicago, IL 60619
Ph: (773) 721-9400
Fax: (773) 721-9494
Email: sales@naylorpipe.com
Internet: www.naylorpipe.com

Products & Services Offered:
Manufacturers of spiral weld pipe and piling and caissons 6" I.D. through 102" O.D. in wall thickness from .134“ to .500“

Northwest Pipe Company
James T. Rollandi
200 S.W. Market Street, Ste. 1800
Portland, OR 97201
Ph: (503) 978-2561
Fax: (503) 978-2561
Email: jrollandi@nwpipe.com
Internet: www.nwpipe.com

Products & Services Offered:
Manufacturer of steel H-Piles and hot rolled steel sheet piling.

Pacific Coast Council of Pile Drivers
Lonnie Wagen
412 S. 13th St.
Tacoma, WA 98402
Ph: (206) 728-2396
Fax: (253) 627-5121
Email: lu2396@worldnet.att.net

Penn State Fabricators
Herbert J. Engh
124 Newton Street
Brooklyn, NY 11221
Ph: (718) 388-1890
Fax: (718) 388-4741
Email: pennstate.fab@verizon.net
Internet: www.pennstatefabricators.com

Products & Services Offered:

Pile Buck
Chris Smoot
P.O. Box 64-3929
Vero Beach, FL 32964
Ph: (772) 231-5200
Fax: (772) 231-8400
Email: pilebuck@pilebuck.com
Internet: www.pilebuck.com

Products & Services Offered:
Monthly newspaper for pile driving.

Pile Dynamics Inc.
Garland E. Likins, Jr.
4535 Renaissance Parkway
Cleveland, OH 44128
Ph: (216) 831-6131
Fax: (216) 831-0916
Email: garland@pile.com
Internet: www.pile.com

Products & Services Offered:
Dynamic pile testing equipment, dynamic pile testing service. pile driving analyzer, pile integrity tester, pile installation recorder for driven piles. hammer performance analyzer, saximeter, GRLWEP wave equation.

Pile Equipment Inc.
Mike Elliott
1058 Roland Avenue
Green Cove Springs, FL 32043
Ph: (904) 284-1779
Fax: (904) 284-5588
Email: info@pile-eqp.net
Internet: pile-eqp.net

Products & Services Offered:
Sales, rental, parts, service of pile driving equipment: Delmag, HPSI, Vulcan, Dawson, Hamortex, ABI, Multiplier.

Pileco Inc.
Warren Waite
P.O. Box 16099
Houston, TX 77222
Ph: (800) 474-5326
Fax: (713) 691-0089
Email: ww waive@pileco.com
Internet: http://www.pileco.com

Products & Services Offered:
Sales-rental-service. Delmag diesel hammers, IHC Hydrohammers, Vibrohammers & drills, pile driving leads, helmets, jet pumps, saximetre, and other accessories.

Pilemac Inc.
George W. Smith
91 Greenville Rd.
Livermore, CA 94550
Ph: (800) 745-3622
Fax: (925) 449-6034
Email: gs mith@pilemac.com
Internet: http://www.pilemac.com

Products & Services Offered:
Rental, sales, vibratory drivers/extractors, cranes, fixed/swinging leads, jet pumps, inserts, drills, de-watering pumps, cushion materials, pile driving leads, cutter head, drill bits, drive caps, off shore leader system, pile hammers-vibratory, diesel.

Piling Products Inc.
Sandra R. Koslow
1058 Roland Avenue
Green Cove Springs, FL 32043
Ph: (904) 284-1779
Fax: (904) 284-5588
Email: info@pile-eqp.net
Internet: pile-eqp.net

Products & Services Offered:
Sales-rental-service, Delmag diesel hammers, IHC Hydrohammers, Vibrohammers & drills, pile driving leads, helmets, jet pumps, saximetre, and other accessories.

Pipe & Piling Supplies
Kevin Brady
P.O. Box 44178, 1658 Bedford Hwy.
Bedford, NS B4A 3Z8
Ph: (902) 835-6158
Fax: (902) 835-6079
Email: kbrady@pipe-piling.com

Products & Services Offered:
Rolling mill, spiral weld pipe, pipe 6 5/8 to 120” o.d., lengths up to 128 ft. long.

Pipe & Tube Supplies Inc.
Jeff Scaree
4201 West Orange Street
Pearland, TX 77581
Ph: (800) 883-7473
Fax: (281) 485-2149
Email: js cear ce@ptsi-us.com
Internet: www.pipeandtube supplies.com

Products & Services Offered:
Provider of steel pipe piles with submerged arc-welding capabilities to length.

Pittsburgh Coatings
Alex Lowery
8105 Perry Highway
Pittsburgh, PA 15237
Ph: (412) 366-5159
Fax: (412) 366-6019
Email: awl@pittcoat.com
Internet: www.pittcoat.com

Products & Services Offered:
Steel beams, pipe pile, steel sheet piling, H bearing piling, steel fabrication, sheet piles, H-beam, coating.

Pittsburgh Intermodal Terminals
Mark A. Dewinney
P.O. Box 29
Butler, PA 16003
Ph: (724) 287-7733
Fax: (724) 287-5708
Email: mdevinney@nicholasinc.com

Products & Services Offered:
River terminal.

Precast/Prestressed Concrete Institute
John S. Dick
209 West Jackson Blvd., Ste. 500
Chicago, IL 60606
Ph: (312) 786-0353
Fax: (312) 786-0300
Email: jdick@pci.org
Internet: www.pileco.com

Products & Services Offered:
A dynamic international trade association devoted to research, development, education, and promotion concerning pre-cast concrete products including piles.
Raymond Piling Products Inc.
Ray Johnson
391 W. Water St.
Taunton, MA 02780
Ph: (508) 821-4700

Robishaw Engineering Inc.
Dixon McNair
P.O. Box 79246
Houston, TX 77279
Ph: (800) 327-3-4239
Fax: (800) 643-0690
Email: kmich@robinshawengineering.com
Internet: www.robinshawengineering.com

Products & Services Offered:
Manufacturer of flexifloat construction systems. Rental and sales of truck-portable sectional barges and attachments for marine pile driving and construction.

SME
Billy Camp
840 Low Country Blvd.
Mount Pleasant, SC 29464
Ph: (843) 884-0001
Fax: (843) 881-6149
Email: bcamp@smeinc.com
Internet: www.smeinc.com
Products & Services Offered:
Consulting, design, geotechnical, testing, vibration monitoring.

Shoreline Steel Inc.
Tom M. Willey
P.O. Box 480519
New Haven, MI 48048
Ph: (586) 749-9650
Fax: (586) 749-9653
Internet: www.shorelinesteel.com
Products & Services Offered:
Manufacturer of cold-formed, interlocking steel sheet piling.

Skyline Steel Corporation
Rory Kelly
5610-B Sandy Lewis Dr.
Fairfax, VA 22032
Ph: (703) 978-2500
Fax: (703) 978-2092
Email: rkelly@skylinesteel.com
Internet: www.skylinesteel.com
Products & Services Offered:
Rental, sales, steel beams, pipe piling, steel sheet piles, H bearing piles, pile point and splicers, steel fabrication, environmental barrier walls.

Soil Consultants Inc.
Kenneth Johnson, Jr.
P.O. Drawer 698
Charleston, SC 29402
Ph: (843) 723-4539
Fax: (843) 723-3648
Email: kennyj@soilconsultantsinc.com
Internet: www.soilconsultantsinc.com
Products & Services Offered:
Consulting, geotechnical, testing, vibration monitoring.

Specialty Piling Systems Inc.
Stephen K. Whitty, Jr.
P.O. Box 1607
Sidell, LA 70459
Ph: (985) 643-0690
Fax: (985) 643-0690
Email: SWhittySPS@earthlink.net
Products & Services Offered:
Sales and brokerage of pile driving and marine equipment; accessories (pile points and connectors, recoil dampener rings); Vulcan slide bars & parts; supplies (hammer & pile cushions (incl. Bongossi); hardwood mats. consulting services (varied).

Steel Dynamics Sales NA Inc.
Paul J. Kotsenas
295 Cottingham Place
Cranberry TWSP, PA 16066
Ph: (724) 452-3991
Fax: (724) 452-3392
Email: paul.kotsenas@stdl-cci.com
Internet: www.steeldynamics.com
Products & Services Offered:
Steel beams, H bearing pile.

Sunbelt Rental Piledriving Equipment
Samuel Glova
8 Bryant Court
Sterling, VA 20120
Ph: (800) 223-8427
Fax: (703) 435-4385
Email: sglova@sunbeltrentals.com
Products & Services Offered:
Rental, service and sales of foundation equipment; diesel/air/hydraulic hammers, drills and attachments; fixed and swinging leads; hydraulic vibratory driver/extractors with complete accessories, hydraulic concrete pile cutters.

T+R Pipeline Services
Warren Cross III
15110 Hooper Rd.
Houston, TX 77047
Ph: (713) 412-9120
Fax: (713) 413-9112
Email: tcross@trpipe.com
Products & Services Offered:
Steel pipe piles, steel sheet piles.

Timber Piling Council
Dean Matthews
2405 61st Ave. SE
Mercer Island, WA 98040
Ph: (800) 275-4755
Fax: (266) 275-4755
Email: dean@matthewsassociates.com
Internet: www.timberpilingcouncil.org
Products & Services Offered:
Provide current, accurate technical information about pressure-treated wood piling.

Trimble Navigation
Gretchen Hartley
11412 Timberwild St.
The Woodlands, TX 77380
Ph: (281) 292-8876
Email: ghartley@trimble.com
Internet: www.trimble.com
Products & Services Offered:
Sales, GPS & construction software.

TXI Chaparral Steel
Stan Baucum
300 Ward Rd.
Midlothian, TX 76065
Ph: (800) 527-7979
Fax: (972) 988-7502
Email: tcbaucum@TXI.com
Internet: www.txistleets.com
Products & Services Offered:
Steel pipe piles, steel sheet piles.

United Wood Preservers
Wayne R. Comtois
P.O. Box 248
Whitmire, SC 29178
Ph: (803) 694-3668
Fax: (803) 694-3976
Email: www.unitedwood.com
Internet: wcomtois@unitedwood.com
Products & Services Offered:
Wood treating.

Versatile Piling Accessories
Ernie Taylor
1704 Tower Industrial Dr
Monroe, NC 28110
Ph: (800) 280-9950
Fax: (704) 225-1567
Email: pilingman@aol.com

Vulcan Foundation Equipment
Mike Songer
P.O. Box 5413
Chattanooga, TN 37406
Ph: (800) 742-6637
Fax: (423) 698-1587
Email: msonger@vulcanhammer.com
Internet: www.vulcanhammer.com
Products & Services Offered:
Vulcan air/steam, piling hammers, distributor for the IHC Hydrohammer, IHC handling systems, sea steel-fast frame.

WPC
William Wright
1017 Chuck Dawley Blvd.
Mt. Pleasant, SC 29464
Ph: (843) 884-1234
Fax: (843) 884-9234
Email: bwright@wpceng.com
Internet: www.wpceng.com
Products & Services Offered:
Analysis, geotechnical, testing, vibration monitoring, PDA.

These listings only comprise PDCA Associate and Contractor members and not Individual members, due to space constraints.
SUMMARY

We civil engineers frequently work on expansions of existing industrial plants, which may have near-surface zones containing some contaminants. Pile support of such expansions is often needed, but regulatory agencies are concerned with the potential environmental effects of puncturing a clay aquitard which overlies a sand aquifer. Expensive countermeasures have been required for this situation.

We investigated the problem using the literature (scarce), analytical calculations, and tests on model piles simulating the situation. The results indicate that proper selection of the pile type, pile material, and pile tip design prevents contaminant transfer. Use of a displacement-type pile, made of impervious material, and (possibly) with a pointed tip is recommended for this situation.

INTRODUCTION

It’s hard to drive through much of Louisiana without being in sight of some chemical plant, especially in the Baton Rouge-New Orleans corridor and around Lake Charles. We civil engineers often design expansions for these existing plants. Those of us who do are well aware of the Louisiana Department of Environmental Quality (LDEQ), and how some of their policies affect even our foundation designs. One particular LDEQ policy is the “Groundwater Certification” you must make to receive — get this — your Air Quality permit!

This requirement arose during Paul Templet’s term as LDEQ Secretary, because so many older plants had real or suspected groundwater impacts from spills, pipe or tank leaks, etc. You have to cleanup or at least monitor any underground pollution. Where this LDEQ policy meets your foundation design is when you need pile support but there is some underground contamination in the area. Of course, you want to drive the piles to a sand to get high capacity. However, most of our sands are “aquifers”: potential sources of drinking water. The regulatory agency is concerned that pile foundations may cause or accelerate transfer of pentahexachlorinated chicken fat or other chemicals from the contaminated upper zone to a lower aquifer. LDEQ’s design requirements to block any such transfer are quite complicated and expensive, as we will see.

The senior author has encountered this problem on several industrial expansions, and found almost no guidance or information in the literature. The University of New Orleans (UNO) received a USEPA grant to study piles as a mechanism for contaminant transfer. This article describes our findings to date; these were also published in Boutwell, et.al., (2000).

POTENTIAL FOR CONTAMINATION BY PILSES

We identified four mechanisms for potential contaminant transfer. The first is from the pile material itself, such as a creosoted timber pile. This mechanism is limited in today’s real-world construction, and was not studied. The mechanisms that would apply to all piles are:

- Direct Transfer. This potential mechanism is illustrated in Figure 1. Soil bearing capacity theory indicates that there is a roughly conical “dead zone” or plug of soil just below the pile tip. Under the right (wrong for us) conditions, the plug could be created in the contaminated zone (Stage 1) and carried along with the pile tip (Stage 2) all the way down to the aquifer. This would result in a one-time slug of contaminants reaching the aquifer (Stage 3). Groundwater flow in the aquifer then moves a plume of the contamination away from the pile tip.

![Figure 1 – Direct Transfer – Plug at Pile Tip](image)
Driven Pile Design

Value Engineering using driven piles

Conduit Formation. This would be continuous (long-term) flow along the pile, as illustrated in Figure 2. It occurs in the soil zone disturbed by pile-driving, especially along the pile-soil interface. It requires:

1. that the pile create an annular void, or at least a zone of higher permeability, and
2. a downwards hydraulic gradient to cause flow, i.e., the groundwater head in the contaminated zone must be higher than that in the aquifer.

Wicking. This would be flow through the pile itself, as shown on Figure 3. It could occur if the pile is made of a material more permeable than the soil (usually clay) which lies between the contaminated upper zone and the lower aquifer. Wood and some concrete are more permeable than most of our Louisiana clays. Of course, you must still have a downwards gradient to cause flow. Where wicking exists, it would be a long-term problem.

The regulatory response to these potentials is to require that the piles be hydraulically isolated from the contaminated zone. A typical such requirement is illustrated in Figure 4. First, you drill out the contaminated soils. Then, you grout a casing (steel or plastic) into place, extending below the contaminated soils to prevent the contaminants from having access to the “disturbed” zone or pile. This is shown as steps 1, 2, and 3 of Figure 4. Finally, you can drive your pile through the casing (Step 4). Then, you have to grout up the casing (Step 5). The cost for this procedure can be as much as the cost of the pile!

What are your options? You could stop the piles in the clay, leaving a clay barrier beneath the pile tips. However, this means reduced pile capacity, and thus many more piles: another extra expense. Of course, industries don’t want to spend extra money on casing or more piles, especially if it’s not necessary.
OVERVIEW OF STUDY

A literature review indicated only two references to this situation. The first involved groundwater contamination at the old Ethyl plant in Baton Rouge [Campbell, et.al., (1984)]. However, while they showed unsealed water wells to have been a major factor, there was no proof or even strong indication that piles contributed to the problem. The second was a model pile study by Hayman, et.al., (1993), where they caused flow of chlorinated solvents through their pile/soil system. They found a small effect due to Direct Transfer, some due to Wicking, but none due to Conduit Formation.

So, we developed a program at UNO to look into this problem. We were fortunate enough to get U.S. EPA funding for the program. Basically, we studied Direct Transfer by analytical means, using contaminant transport equations. We looked at Conduit Formation and Wicking by model pile tests.

DIRECT TRANSFER STUDY

As mentioned before, this could occur if a plug of contaminated soil were carried driven to the aquifer by the pile tip. The volume of the soil plug (V) for a flat-tipped pile driven through clay is about 0.15D^3, where D is the pile width/diameter. Initially, the contaminant concentration in the pore water of the plug is the same as that in the contaminated upper stratum (c_i). The volume of actual contaminant in the plug is its pore water volume times the chemical concentration in the pore water. It can be calculated as plug volume (V) times the soil porosity (n) multiplied by c_i. Some of the contaminated initial plug is lost by friction during driving, especially when the pile tip passes through stronger materials between the contaminated zone and the aquifer. Hayman, et.al., (1993) used piles with conical tips, which resulted in smaller plugs. Therefore, the volume of soil transferred in their tests was far less than the above theoretical maximum. Their results indicated contaminant transfer via this mechanism of the order of 0.3% (in the case of their steel pile) to 7% (in the case of their wooden pile) of the theoretical maximum for flat-tipped piles.

Hayman, et.al., (1993) also calculated the average concentration (c_v) in static groundwater under a hypothetical industrial process area with an average pile spacing of 40 feet. The resulting dilution factor (c_v/c_i) was about 6x10^9. In other words, an original concentration of, say, 1000 mg/L (ppm), would be reduced to less than 0.01 ug/L (ppb). However, regulatory concerns would be more appropriately addressed by examining the maximum concentrations downgradient of a pile group in a flowing aquifer. As illustrated in Figure 5, the concentrations caused by the slug of contaminated soil decrease as the plume moves away from the pile.

This effect can be calculated using the three-dimensional advection—dispersion model developed by Baetsle, (1969). Diffusion can normally be disregarded at the relatively high groundwater velocities in an aquifer. In this case, the Baetsle equation reduces to:

\[\frac{c}{c_0} = \frac{V}{8 \pi \alpha X} \left[e^{-\frac{r}{X}} \right] \]

(Eq. 1)

Where

\[F = \frac{1}{4\alpha X} \left[(X - x)^2 + py^2 + qz^2 \right] \]

\[V_v = \text{Effective pore volume of plug} \]
\[\alpha = \text{Characteristic length, direction (i)} \]
\[p = \alpha / \alpha_y \]
\[q = \alpha / \alpha_x \]
\[k = \text{Horizontal hydraulic conductivity} \]
\[i = \text{Hydraulic gradient in aquifer} \]
\[X = \text{Location of plume center along flow axis} \]
\[x = \text{Location of (c/c_0) along flow axis} \]
\[y = \text{Location of (c/c_0), horizontally from x axis} \]
\[z = \text{Location of (c/c_0), vertically from x axis} \]
\[v^i = \frac{v}{n_i} \text{ where n_i = porosity of aquifer} \]
\[v = \text{gross water velocity} = k_i \]
Liebherr LRB 155
Max. Operating weight: 74 US ton
Leader Length: 60 ft./70 ft./80 ft.
Max. Torque: 165,000 ft.lbs.
Max. Push/Pull (crowd force): 66,000 lbs.
Engine: Liebherr V8 Diesel engine, D 9408 TI-E, 544 HP at 1900 rpm. No additional power packs are required as attachments, can be powered with the machine’s engine.

Liebherr LRB 125
Max. Operating weight: 43 US ton
Leader Length: 42 ft.
Max. Torque: 87,000 ft.lbs.
Max. Push/Pull (crowd force): 44,100 lbs.
Engine: Liebherr V8 Diesel engine, D 9408 TI-E, 544 HP at 1900 rpm. No additional power packs are required as attachments, can be powered with the machine’s engine.

Liebherr LRB 255
Max. Operating weight: 88 US ton
Leader Length: 80 ft./90 ft./100 ft.
Max. Torque: 217,000 ft.lbs.
Engine: Liebherr V8 Diesel engine, D 9408 TI-E, 544 HP at 1900 rpm. No additional power packs are required as attachments, can be powered with the machine’s engine. Optional Mercedes Benz engine.

Liebherr LRB 400
Max. Operating weight: 154 US ton
Leader Length: 100 ft./120 ft./140 ft.
Max. Torque: 289,300 ft.lbs.
Max. Push/Pull (crowd force): 132,000 lbs.
Engine: Liebherr V8 Diesel engine, D 9408 TI-E, 544 HP at 1900 rpm. No additional power packs are required as attachments, can be powered with the machine’s engine. Optional Mercedes Benz engine.

Contact Liebherr for your crane requirements
Liebherr Nenzing Crane Co.
1400 N. Sam Houston Pkway. E. # 160, Houston, TX 77032
TEL. (281) 219 7129 FAX. (281) 219 7134
Email: crawler.crane@lncliebherr.com
www.liebherr.com
For large relative distances ("X > 20) the contaminant plume is fairly uniform in concentration near its center, and Eq. 1 can be approximated closely by:

\[
\frac{c_m}{c_0} = \frac{\frac{NV_e \sqrt{pq}}{8(\pi \alpha x^1)^{3/2}}}{8(\pi \alpha x^1)^{3/2}}
\]

(Eq. 2)

In most cases, pile driving terminates a short distance into the aquifer because of high tip bearing. Upwards flow is barred by the overlying clay, so virtually all flow is in the aquifer. Mathematically, you can account for this by doubling the contaminant volume, that is, by using \((V_c) = 2nV\). Multiple pile groups can be analyzed using Eq. 1 with superposition, or by Eq. 2 for large relative distances "X. We calculated the maximum \((c/c_0)\) values along the x-axis \((c_m/c_0)\). The assumed flow/transport parameters are presented in Figure 6, which also illustrates the results in terms of \((c_m/c_0)\) for various distances from the downgradient pile face, both for a single pile and for a group of 9 piles.

A useful interpretation of Figure 6 is to evaluate the distance \((X_c)\) from the pile group at which concentrations of 1.5

Cost Effective Timber Pile Foundation Solutions

The low cost piling solution for Foundation and Marine piling.

- Design capacities to 75 tons.
- Technical seminars available.
- Design information available.
- From a natural, renewable resource.

For more information contact:

TIMBERPILINGCOUNCIL

FOUNDATION & MARINE PILING

800-410-2070 pst
Fax: 206-273-4755
www.timberpilingcouncil.org
info@timberpilingcouncil.org

Quality Assessment of Piles and Shafts

Anywhere in the U.S.

- Unmatched expertise in:
 - Pile Driving Monitoring (PDA)
 - Dynamic Load Testing
 - GRLWEAP Analysis
 - Pulse Echo (PIT) and Cross Hole Sonic Logging (CHA) Integrity Testing
 - SPT and Becker Drill Energy Measurements

OFFICES:

- GRL Central
 216-631-6131
- California
 661-259-2977
- Colorado
 303-666-6127
- Florida
 407-826-6539
- Illinois
 847-670-7720
- North Carolina
 704-593-0992
- Ohio
 216-292-3076
- Pennsylvania
 610-459-0278

e-mail: info@pile.com

www.pile.com
various common types of contaminants reach U.S. Environmental Protection Agency (USEPA) “Maximum Contaminant Levels” (MCL’s): the maximum concentrations of various constituents that the U.S. EPA will allow in groundwater. Petroleum hydrocarbons, heavy metals, and/or volatile organics are the common contaminants in most industrial settings. Table 1 presents \(x \) distances for various initial concentrations \(c_0 \) of these groups, again assuming the worst case for Direct Transfer: flat-tipped piles.

This data indicates that direct transfer is negligible for all but the most highly contaminated sites, even with the worst-case assumption on the plug volume (flat pile tip). The results from Hayman, teal. (1993) suggest that using conical pile tips reduces \(V_{ic} \) by 1 to almost 3 orders of magnitude. However, there is some reduction in end-bearing with conical tips. The effect of a conical tip on end bearing of the pile was investigated using data from Meyerhof, (1961).

Table 1 - Distances Downgradient to \(c_m < MCL \)

<table>
<thead>
<tr>
<th>GROUP</th>
<th>MCL (mg/L)</th>
<th>Single Pile (a_s) (feet)</th>
<th>(c_i = 10 \text{ mg/L})</th>
<th>(c_i = 1000 \text{ mg/L})</th>
<th>9 - Pile Group (a) (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pet. Hydrocarbon</td>
<td>0.34</td>
<td><3</td>
<td>10</td>
<td><3</td>
<td>30</td>
</tr>
<tr>
<td>Heavy Metals</td>
<td>0.015</td>
<td>3</td>
<td>60</td>
<td>12</td>
<td>240</td>
</tr>
<tr>
<td>Volatile Organics</td>
<td>0.005</td>
<td>6</td>
<td>140</td>
<td>25</td>
<td>550</td>
</tr>
</tbody>
</table>

![Figure 7 – Schematic of Model Pile Test](image)

HARTMAN ENGINEERING

Specializing in design of cofferdams, retaining walls and foundation support for 35 years throughout the U.S. and internationally.

BUFFALO, NEW YORK | PHONE: 716-759-2800 | FAX: 716-759-2668
It can be shown that a conical tipped pile has the same capacity as a flat-tipped pile if its tip penetration into the sand is increased by 0.5-1.0 pile widths. This is equivalent to 1% - 2% additional pile length for typical cases, a small price to pay for regulatory acceptance and far less than the surface casing approach. In the case of the 9-pile group, using 45° conical tips decreases the distance \(x_c \) at which \(c_m = 0.005 \text{ mg/L for } c_o = 1000 \text{ mg/L from over 450 feet to less than 30 feet.} \\

The clay we used in the tests is also used for liners at the Tangipahoa Parish Regional Solid Waste Facility. It is a sandy clay (CL) with a Liquid Limit of 34 and has about 75% fines. It was compacted into the chamber in 5 layers to about 88% Standard Proctor Compaction.

The model piles we tested were 1 inch in diameter. We used typical pile materials: steel pipe, steel “H”, untreated wood, and treated wood. Later, we plan to include concrete. As controls we had one chamber with no pile and one chamber with an almost full-length sand “pile” to represent the best and worst possible cases for flow. After the clay was placed, we pushed the steel and wood piles into place, then filled the top with water and applied pressure. During the tests, we made periodic measurements of flow and electrical conductivity. The measurements were made for all three collection rings individually.

MODEL STUDIES - CONDUIT AND WICKING

Model Tests. We made 6 test chambers, as illustrated in Figure 7. Each test chamber is a 12 inch diameter PVC pipe 27 inches high with sand and clay layers placed to simulate the field conditions of a natural clay aquitard overlying a sand aquifer. The model pile is driven through the clay and then flow induced from top to bottom. The top sand layer distributes the in-flowing “contaminated” permeant uniformly before it enters the clay. The compacted clay layer simulates the aquitard. As the clay was placed, bentonite seals were placed against the chamber walls to minimize wall effects. The bottom sand layer allows collecting and draining the permeant exiting from the clay. This layer is divided by three concentric rings; each sand section has its own collection system so that any edge effects on flow can be accounted for. Each segment also has a conductivity meter for measuring the salinity of its effluent. A rubber “doughnut” above the top sand applies effective overburden pressure to the clay column. The permeant is supplied by a separate pressurized chamber. We used salt water (brine) as the permeant rather than organic chemicals for two reasons: lab safety and ease of concentration measurement. Brine concentration can be determined from simple electric conductivity measurements on the effluent, since salt water is a far better conductor than the original (fresh) pore water.
After some 2,400 hours of permeation, we replaced the water with brine and continued another 1,400 hours. We performed two identical sets of such tests, using fresh soil for the second set.

Model Test Results. We analyzed the results two ways: first by the effect on flow and secondly by the change in electrical conductivity (which measured brine transport). Only the data from the innermost collection ring was used, since that ring would have the most effect from the model piles and the least effect from seepage along the soil/PVC interface at the sidewall of the chamber.

Flow was evaluated by calculating the hydraulic conductivity (“permeability”) of the center ring directly from Darcy’s Law:

\[k = \frac{Q}{4A} \]
(Eq. 3)

Where

- \(k \) = Hydraulic Conductivity (cm/sec)
- \(Q \) = Flow Rate measured from innermost ring (cm³/sec)
- 4 = Gross Hydraulic Gradient (about 25)
- \(A \) = Soil Area above innermost ring, measured horizontally (cm²)

The results from the water phases of the two sets of tests were averaged and are illustrated in Figure 8. The brine phase results did not differ to any significant degree. It is clear from Figure 8 that, compared with the no-pile control (which represents a site without piles):

- Steel pipe and treated wood piles caused little change in the flow rate.
- Steel “H” piles caused some change; enough to make the hydraulic conductivity exceed the LDEQ/EPA liner standard of 1x10⁻⁷ cm/sec.
- Untreated wood piles caused a significant change in flow.

The difference between the behaviors of the pipe and “H” piles is most likely because of the differences in lateral pressures the two pile types develop during driving. The pipe displaces some 6 times the volume of soil displaced by the “H”. This creates far more lateral pressure of the soil against the pile, actually more than the soil’s passive pressure. The displacement-type piles therefore, have a greater tendency to seal any annulus developed during driving. Both types of wood piles are displacement-type piles, but the untreated wood is more permeable, resulting in “wicking” action in the pile material. This “wicking” phenomenon was also observed by Hayman, et.al., (1993).

The electrical conductivity measurements during the brine permeation phase showed the “contaminant” transport behavior of the various tests. To simplify, we measured the effect by the ratio (Re) of the change in conductivity (over background) to the input brine’s conductivity over background. Again, only data from the innermost collection ring was analysed. The results are presented on Figure 9. In that figure, \(c \) = measured conductivity, \(c_0 \) = background conductivity, and \(c_b \) = brine conductivity.

The results track those for flow closely. The treated wood and steel pipe piles showed even less increase in relative concentration than did the no-pile case, probably because such piles densify the surrounding soils; increased density causes lower hydraulic conductivity. The untreated wood and steel “H” piles showed increases
in relative concentration approaching those for the sand pile case.

CONCLUSIONS

This study and that by Hayman, et.al. (1993) were on two different types of contaminants; ionics (UNO) and volatile organics (Hayman). Yet, they both led to the same conclusions where they overlapped. This study also extended the pile types considered. Overall, we concluded that:

- Displacement-type piles (wood, steel, and probably concrete) do not form conduits for contaminant migration.

- Non-displacement piles (steel “H”) do form such conduits.

- Untreated wood allows contaminant “wicking”, but treated wood does not.

- The effect of Direct Transfer (plug) is negligible, and can be made virtually undetectable by using pointed pile tips.

These findings lead to an important general conclusion: proper pile selection and tip design prevent the contaminant transfer that some regulators are concerned about.

UNO is conducting further tests, including bored piles (drilled shafts), driven concrete piles, different pile embedments, etc. This work will extend the present study to make the results even more useful to the design and environmental communities.

![Figure 8 – Final Conductivity of Center Ring](image8)

Figure 8 – Final Conductivity of Center Ring

![Figure 9 – Brine Concentration Over Time](image9)

Figure 9 – Brine Concentration Over Time

We civil engineers frequently work on expansions of existing industrial plants, which may have near-surface zones containing some contaminants.

Dr. Gordon Boutwell, P.E., is president of Soil Testing Engineers, Inc., Baton Rouge, Louisiana, and an adjunct professor of civil engineering at the University of New Orleans. He holds BCE and MSCE degrees from Georgia Tech and a PhD from Duke. He has been a practicing geotechnical engineer in Louisiana for almost 40 years. He is a licensed professional engineer in Louisiana and Mississippi and is a member of the editorial board of ASCE.
ACKNOWLEDGMENTS

The authors wish to thank Soil Testing Engineers, Inc., for sponsoring Dr. Boutwell’s time on this paper, and the Tangipahoa Parish Regional Solid Waste Facility for supplying the clay. The model pile research was conducted at the Geotechnical Laboratory at the University of New Orleans under the direction of Dr.s Nataraj and McManis. It was sponsored by the USEPA under Contract R825427-01-0-. However, the opinions given are solely those of the authors, and do not necessarily reflect the opinions of the sponsoring organizations.

REFERENCES

A very similar version of this article appeared in the February 2001 issue of The Louisiana Civil Engineer.

(1) President, Soil Testing Engineers, Baton Rouge, Louisiana.
(2) Professor of Civil Engineering, University of New Orleans.
(3) Chairman, Department of Civil Engineering, University of New Orleans.
NAYLOR PIPE PILING

Your direct call to Naylor’s Chicago plant will give you personalized service including:

- 100% domestic steel
- Exact lengths
- Attached or loose end plates
- In-plant inspection
- Mill certification with the shipment
- Conical points, chill & splice rings as required
- Prompt availability of test and production pile

Visit our Website: www.naylorpipe.com
If you ask Dr. George Goble what he enjoys most about the pile-driving industry, an industry he's worked in for 40 years, he'll tell you, without a doubt, it's the people.

“I've always enjoyed the time I've spent on the job site. This industry consists of a lot of colorful and delightful people,” he says.

Even after four decades and retiring from three places – the University of Colorado, Boulder; Pile Dynamics Inc. (PDI); and GRL, he is still busy in the industry.

He does consulting work in the deep foundations area and conducts numerous continuing education seminars. He is also active with the PDCA Technical Committee and the Education Committee. About 15 years ago, he started a business that tests and load rates bridges and is still involved with that. “I suppose that the pile-driving industry is the nearest thing that I have as a hobby. I don’t make much money in it, so I guess it must be a hobby.”

Goble, who was born on a farm near Boise, Idaho, earned a Bachelor of Science degree in civil engineering from the University of Idaho in Moscow in 1951. The Korean War started in 1950 and, immediately upon graduation from the University, he served two years with the Air Force. After that, he worked as a bridge construction inspector for the Oregon Highway Department for two years. He then went to graduate school at the University of Washington at Seattle where he received an M.S. degree in structural engineering in 1957 and a Ph.D. in the same discipline in 1961. He spent the academic year of 1957-58 as a Fulbright student at the Stuttgart Technische Hochschule in Stuttgart, Germany.

During the years of his graduate studies, Goble worked as a structural engineer at an industrial facilities design firm in Seattle. He joined the faculty at Case Institute of Technology in Cleveland in 1961.

He was there until 1977 when he moved to the University of Colorado, Boulder as chairman of the civil engineering department and retired from the University of Colorado in 1992.

He says his career in the pile driving industry started in 1964 while on the faculty at Case Institute.

“We developed the capability to measure (routinely) pile top force and motion during hammer impact. From this, we developed methods of analysis that are quite accurate in predicting pile capacity. Also, hammer performance can be evaluated from those measurements. An electronic device was developed that processed the measurements in the field and provided the pile capacity prediction and the hammer performance information after each hammer blow.”

This device became known as the Pile Driving Analyzer or PDA. In 1972, he founded Pile Dynamics, Inc. (PDI) to commercialize the PDA and was active with PDI together with Frank Rausche and Garland Likins, who had been his graduate students on the research project, until about four years ago when he sold his interest to them.

“I began a research project that was funded by the Ohio DOT and the Federal Highway Administration. This project continued until I left Case in 1977.”

The goal of the project, he says, was to develop methods of predicting the load carrying capacity of a driven pile by making measurements on the pile under the pile driving hammer at the end of driving.

Goble was a founding member of PDCA. He recalls that the forming of the association grew out of a conversation he had with Chuck Whitaker, who was with Skyline Steel at that time.
pile driving. The PDA is now used in about 40 countries around the world.”

PDCA and the industry

Goble was also a founding member of PDCA. He recalls that the forming of the association grew out of a conversation he had with Chuck Whitaker, who was with Skyline Steel at that time.

“I had been in Taiwan and saw the use of cast-in-place piles in applications that were clearly not economical. We talked about the need for an organization that would promote driven piles. Chuck picked it up and did the work of forming the beginning of the organization. He really did a great job in getting it underway and in mobilizing Skyline to support the organization. I was a member of the original board of directors.”

Since the early 1960s, Goble has seen a major metamorphosis in the industry. “The changes in 40 years have been enormous. Hammers have become much bigger, the hydraulic hammer has appeared, hammer performance has become much more reliable, pile capacities have greatly increased, quality of operations is greatly improved and the industry understands pile driving much better.”

Even with the changes and advancements, he says the industry still faces its share of challenges.

“The driven pile is a very high quality deep foundation element,” he explains. “It can be installed in most subsurface conditions in a very cost effective manner. I believe that many designers do not understand this. The challenge facing the industry is to educate engineers about the advantages of the driven pile. PDCA is currently working to provide education for university professors and we’re also doing an annual seminar. We must continually look for other opportunities.”

In his spare time, Goble, who lives near Boulder, CO, enjoys spending time with his wife, Christine, and considers himself to be an avid gardener.

He also enjoys a close relationship with his son, Greg, and daughter, Tanya, who is the executive director of PDCA.

“It is very interesting to have the opportunity to work with one of your children. One sees them in a completely different light. It is sometimes a bit difficult, however, to take orders from them!” he smiles. ▼
Step 1: Select Membership Type

I wish to apply for the following membership status (check one):

- Contractor (Annual Gross Sales >$1 Mil./year: $700/year). (Annual Gross Sales <$1 Mil./year: $350/year)
 A Contractor Member is defined as a specialty subcontractor or general contractor who commonly installs driven piles for foundations and earth retention systems. Includes one primary membership. Secondary memberships are $75 each.

- Associate ($700/year)
 Associate Members of the Association shall consist of firms or corporations engaged in the manufacture and/or supply of equipment, materials, testing or other services to the pile driving industry. Secondary memberships are $75 each.

- Technical Affiliate ($95/year)
 Technical Affiliate Members of the Association shall consist of individuals who are involved with the design and installation of driven piles or in teaching the art and science of pile design and installation. They may be employed engineers, architects, government agencies, or universities. Employees of contractors are not eligible to become Technical Affiliate Members. Note: Technical Affiliate Membership category is for individuals only. For a company listing in the directory and on the Web site, you must join as an Associate Member.

- Retired Industry Member ($50/year)
 A Retired Member shall be defined as any individual who has reached retirement age as defined by U.S. law, who has left active employment and who wishes to remain a member.

 I am retiring as a:
 - Contractor
 - Associate
 - Technical Affiliate

Step 2: Demographic Information

Company Name ________________________________ Phone ________________________________
Your Name ________________________________ Fax ________________________________
Address ________________________________ Email ________________________________
________________________________ Home Page ________________________________
City/State/Zip ________________________________

Step 3: Method of Payment

Attached is my payment of $___________ for annual dues.

I understand that dues are due annually on December 31 and, that if I joined PDCA after March 31, I may be entitled to a prorated dues amount for the subsequent year only.

I am making payment in full by

- Check # __

- Credit Card:
 - MasterCard
 - Visa
 - American Express

 Card Number: ___ Expiration Date:________________________
 Name as it appears on card: ___________________________________ Signature: ________________________________

Please send this completed application to: PDCA
P.O. Box 19527, Boulder, CO 80308-2527 | Phone: 303-517-0421 | Fax: 303-443-3871 | www.piledrivers.org
Step 4. Company Description
(complete only the category for which you are applying)

A. Contractor Only Company Description
(check all that apply):

- Bridge Building
- Bulkheads
- Deep Dynamic Compaction
- Deep Excavation
- Docks & Wharves
- Earth Retention
- General
- Highway & Heavy Civil
- Marine
- Pile Driving
- Other __________________________

B. Associate Company Only Company Description
(check all that apply):

- Accessories
 - Cutter Heads & Drill Bits
 - Dock & Marine Supplies
 - Hammer Cushions
 - Hoses & Fittings
- Applications Systems
 - Aluminum Sheet Piles
 - Coatings & Chemicals
 - Structural Steel
 - Synthetic Material Piles
 - Other Structural Materials
 - H-Piles
- Equipment
 - Air Compressors
 - Cranes
 - Drill Equipment
 - Drive Caps & Inserts
- Services
 - Consulting
 - Design
 - Freight Brokerage
 - Geotechnical
- General
 - Rental
 - Sales
 - Other __________________________

C. Technical Affiliate Only
(check all that apply):

- Analysis
- Geotechnical
- Surveying
- Civil & Design
- Materials Testing
- Vibration Monitoring
- Consulting
- Pile Driving Monitoring
- Educational/Association
- Other

Step 5. Geographic Areas Where Contracting, Products and Services Available
(All applicants check all that apply)

- All States
- CT
- ID
- MD
- NC
- OH
- TN
- WV
- AK
- DC
- IL
- ME
- ND
- OK
- TX
- WY
- AL
- DE
- IN
- MI
- NH
- OR
- UT
- Canada
- AR
- GA
- KY
- MO
- NM
- RI
- VT
- Mexico
- CA
- H
- LA
- MS
- NV
- SC
- WA
- Europe
- CO
- IA
- MA
- MT
- NY
- SD
- WI

Step 6. Sponsorship: Who told you about PDCA?

Member Name ___
ICE
Your 1-Stop Foundation Shop

Because there is no one best way to build foundations, ICE sells and rents all types of equipment for all types of projects - vibratory driver/extractors, diesel hammers, Techno Drill hydraulic drilling and piling rigs, excavator-mounted attachments, hydraulic impact hammers, earth augers and more.

As the industry’s biggest single source provider, we also have the expertise to help meet challenges before they become problems. And that contributes directly to your bottomline.

Every piece of equipment we manufacture and provide is backed by nationwide service and support. Strategically located sales and service locations, a deep parts inventory, and factory-trained techs who know foundation construction equipment inside and out - those are a few benefits that separate ICE from the other guys.

When you have foundation construction challenges, call ICE first and see why we’re known as the most capable 1-stop shop in the industry.

LARGEST RENTAL FLEET IN THE INDUSTRY!

INTERNATIONAL CONSTRUCTION EQUIPMENT, INC.
www.iceusa.com

361 Warehouse Drive • Matthews, NC 28104
Phones: 888 ICEUSA1 & 704 821-8200
Fax: 704 821-8201 • e-mail: info@iceusa.com

As a means of recognizing noteworthy contributions to the industry, PDCA will recognize two outstanding projects (contract values <$200,000 and > $200,000) that utilized driven piles to solve foundation problems.

Qualification for nomination requires projects only to involve driven piles, that the pile driving be completed during 2003 or 2004 and that at least one participant was a PDCA member during the year as a contractor, technical affiliate or associate member. Projects will be judged on qualities such as, but not limited to, uniqueness, timeliness, unusual aspects of pile driving or unusual solutions to foundation problems, value engineering or value to the public or industry.

Entry forms and rules are available at:
PDCA Web site: www.piledrivers.org
PDCA office: (888) 440-7453 (PILE)

Winning projects will receive an award at the PDCA 2005 “Winter Roundtable.”

Nominations will close January 1, 2005
Pittsburgh Coatings Corporation has provided quality services for the pile driving industry since 1960.

- PILE COATING
- FABRICATION
- METALLIZING

FACILITY FEATURES:
- On the Ohio River with 125 ton lifting capacity for barges
- Norfolk Southern rail siding
- 100,000 sq. ft. enclosed building
- 100 ton crane capacity
- 55 ft. under hook
- Wheelabrator - 5 ft. wide x 12 ft. tall work opening
- Coal tar epoxies, zinc primers, canal liners, three-coat systems, metallizing, etc.
- Field service available in the continental U.S.

103 Port Ambridge Drive • Ambridge, PA 15003
(412) 366-5159 • Fax (412) 366-6019
www.pittcoat.com

Calendar of Events

February 17-19, 2005
9th Annual PDCA Winter Roundtable Conference
Francis Marion Hotel
Charleston, South Carolina

June 17-24, 2005
PDCA Professors Piling Institute
Utah State University
Logan, Utah

September 15-16, 2005
PDCA Design & Installation of Driven Piles Seminar
Sheraton Framingham Hotel
Boston, Massachusetts

Assess Bearing Capacity...FAST!
Also monitor driving stresses & hammer performance, and verify pile integrity.

SURE-LOCK

CONCRETE PILING SPLICES
ALL SIZES AND SHAPES OF PILING FOR MOMENT, TENSION & COMPRESSION ENGINEERED TO CODE & DOT REQUIREMENTS FAST - NO WELDING OR GROUTING

Getting them together for over 25 years
Glenn Lockie
Ph 415-331-7260
Fax 415-331-7261

National Ventures Inc.
Test Reports, Brochure, and CD-ROM available

www.pile.com

Pile Dynamics, Inc.
Quality Assurance for Deep Foundations
4535 Renaissance Pkwy.
Cleveland, OH 44128 USA
Tel: 216-831-6131
Fax: 216-831-0916
e-mail: info@pile.com

www.pile.com
We would like to welcome the following new members. Please visit the PDCA Web site at www.piledrivers.org and click on Member Search for complete contact information on all members.

NEW CONTRACTOR MEMBERS

Cianbro
Pittsfield, Maine
Contact: Tom Ruksznis
Services provided: bridge building, bulkheads, docks and wharves, earth retention, general contracting, marine, pile driving.

Hal Jones Contractor, Inc.
Jacksonville, Florida
Contact: Paul C. Kirkland
Services provided: bridge building, bulkheads, docks and wharves, pile driving, marine.

R.L Morrison and Sons
McClellanville, South Carolina
Michael Morrison
Services provided: pile-driving contractor.

Signor Enterprises
Austin, Texas
Contact: Rusty Signor
Services provided: pile-driving contractor

Williams Brothers Construction Co.
Houston, Texas
Contact: James Pitcock
Services provided: pile driving, bridge building.

NEW ASSOCIATE MEMBERS

AB Chance / Hubbell Power Systems
Centralia, Missouri
Contact: Rich Zinser
Services provided: composite piles, helical steel piers, steel pipe piles, drill equipment, drive caps and inserts, leads and spotters, marine equipment.

CDS Manufacturing
Quincy, Florida
Contact: Clayton Sembler
Services provided: concrete piles, trucking services.

Geotechnics
East Pittsburg, Pennsylvania
Contact: Larry Wetzel
Services provided: Deep foundation testing.

International Construction Services, Inc.
Pittsburg, Pennsylvania
Contact: Brian Land
Services provided: coatings and chemicals, steel pipe piles, steel sheet piles, H-piles.

T+R Pipeline Services
Houston, Texas
Contact: Warren Cross
Services provided: steel pipe piles, steel sheet piles, pipe.

United Wood Preservers
Whitmire, South Carolina
Contact: Wayne R. Comtois
Services provided: timber piles, treated lumber and timbers, wood treating.

NEW TECHNICAL MEMBERS

Shawn “Tiny” J. Etier
GS2 Engineering & Environmental Consultants, Inc.
Charleston, South Carolina
Services provided: geotechnical engineering, pile-driving monitoring, vibration monitoring.

Allan Yourman
Diaz-Yourman Associates
Santa Ana, California
Services provided: geotechnical engineering.
Nucor-Yamato Steel’s
HP8, HP10, HP12 & HP14,
PS and PZ Sheet Piling

PILING PRODUCT FEATURES
CAST AND HOT ROLLED IN THE U.S.A.
NATIONWIDE PILING DEALER NETWORK
SHEET PILES HAVE PREFERRED BALL & SOCKET INTERLOCK
H-PILING AVAILABLE IN ASTM A572 GRADES 50 & 60
AND ASTM 690
SHEET PILING AVAILABLE IN ASTM A328,
ASTM A572 GRADES 50 & 60, AND ASTM 690

H-PILE SECTION SIZES

<table>
<thead>
<tr>
<th>Designation</th>
<th>AREA in²</th>
<th>WIDTH in</th>
<th>HEIGHT in</th>
<th>WEIGHT (lbs/ft)</th>
<th>MOMENT OF INERTIA in⁴</th>
<th>SECTION MODULUS in³</th>
<th>SURFACE AREA ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZ22</td>
<td>11.9</td>
<td>17.0</td>
<td>76.6</td>
<td>15.5</td>
<td>9.0</td>
<td>228.6</td>
<td>532</td>
</tr>
<tr>
<td>PZ27</td>
<td>12.1</td>
<td>19.0</td>
<td>78.2</td>
<td>16.8</td>
<td>12.0</td>
<td>304.8</td>
<td>742</td>
</tr>
<tr>
<td>PS27.5</td>
<td>13.4</td>
<td>19.0</td>
<td>66.6</td>
<td>16.7</td>
<td>11.0</td>
<td>27.8</td>
<td>462</td>
</tr>
<tr>
<td>PS31</td>
<td>15.2</td>
<td>19.0</td>
<td>69.2</td>
<td>16.9</td>
<td>15.5</td>
<td>27.5</td>
<td>530</td>
</tr>
</tbody>
</table>

*Note: Nominal coating area excludes socket interior and ball of interlock.

NUCOR-YAMATO STEEL PILING DEALERS

1. Fargo Structural
 Fargo, ND
 (701) 282-2345

2. Mid-America Foundation Supply, Inc.
 Fort Wayne, IN
 (800) 348-1890

3. J. D. Fields and Company, Inc.
 South Holland, IL
 (708) 333-9511
 Bethlehem, PA
 (610) 317-6304
 Houston, TX
 (281) 558-7199

4. D.P. Nicoli, Inc.
 Tualatin, OR
 (503) 692-6080

5. Husker Steel
 Columbus, NE
 (402) 564-3271

6. Skyline Steel Corporation
 Birmingham, AL
 (205) 262-9909
 Citrus Heights, CA
 (916) 863-6000
 Norcross, GA
 (770) 242-9007
 Tinley Park, IL
 (708) 444-0999
 Mandeville, LA
 (985) 624-3620
 East Sandwich, MA
 (508) 833-4600
 Earth City, MO
 (314) 739-1303

7. Skyline Canada
 St-Bruno, Quebec
 (450) 461-6366

Steel H-Piling Dealer
Steel Sheet Piling Dealer
BMP Pressure Treated Wood Products.

The Right Choice for the Environment...
The Smart Choice for Your Next Aquatic Project.

WWPI’s Best Management Practices (BMPs) are designed to protect your treated wood investment from harsh marine conditions while minimizing risk to sensitive environments. BMP treated wood products are mandated by many Federal and State agencies.

BMPs provide technical guidance on wood preparation and treating procedures, post treatment processes, inspection and installation. BMP treated wood products are designed to minimize the amount of preservative and provide a clean and dry product while assuring the long service life that comes with conformance to AWPA Standards.

Always specify only BMP products and require independent third party inspection certification by certificate or the presence of the BMP Quality Assurance Mark.

For your next aquatic project, protect your investment and the environment, require the material be treated and identified according to BMP Standards.

Visit our website for a complete guide on using treated wood in aquatic and wetland environments and the BMPs.
Z SHEET PILING

- Preferred Sheet Pile Shape
- High Strength to Weight Ratio
- Cost Effective Walls
- Wide Range of Connectors Available
APE Vibrator Driver/Extractors
APE Diesel Impact Hammers
APE Leads & Spotters
APE Hydraulic Impact
J&M Vibratory Driver/Extractors
J&M Hydraulic Impact

www.apevibro.com
www.jandm-usa.com

Putting Good Ideas To Work!
World’s Largest Deep Foundation Equipment Manufacturer