PROJECT SPOTLIGHT:
New Cruise Pier 3, San Juan, Puerto Rico
Berminghammer
the clean hammer.

Easy-start
Free-standing
Hydraulic Trip
Low Emissions
Ground Fueling
Remote Throttle
Sheet Pile Adapter
Impact Energy Monitor

see www.berminghammer.com for details

1 800 668-9432
Contents

Letter from the President
By Randy Dietel .. 2

Letter from the Executive Director
By Stevan Hall ... 4

Annual Conference –
March 3-4, 2005-San Antonio, TX 9

2005 PDCA Board of Directors
and Committee Chairmen ... 11

Project Spotlight:
New Cruise Pier 3, San Juan, Puerto Rico 13

The Vibratory Pile Installation
Technique – Part IV .. 16

PDCA Noise and Vibration
Database Progress Update .. 20

Member Profile:
Rusty Signor of Signor Enterprises 26

Membership Directory ... Insert

Benefits of Prestressed Concrete Piles 28

Benefits of Driven Piles
and Membership Application 34

New Member List .. 38

2005 Project of the Year Nominations 39

Whitestone Expressway Project 40

Calendar of Events .. 48

Advertiser Index ... 48

COVER:
Cruise Pier 3 was commissioned by Royal Caribbean
Cruise Lines and the Puerto Rico Ports Authority. The
project involved the construction of a pile-supported
pier in the bay at Old San Juan, Puerto Rico.

Piledriver is published quarterly.
Please contact us by mail at
P.O. Box 66208, Orange Park, FL 32065
Phone: 904-215-4771 | Fax: 904-264-9531
or by E-mail at membershipl@piledrivers.org.

Statements of fact and opinion are the respon-
sibility of the authors alone and do not imply
an opinion on the part of the officers or mem-
bers of the Pile Driving Contractors Association.
All rights reserved. Materials may not be repro-
duced or translated without written permission.
Direct requests for reprint permission should be
made to the Executive Director of the Pile
Driving Contractors Association.
As PDCA gets ready to celebrate its 10th Anniversary on Dec. 20, 2005, I have enjoyed the privilege of serving as its president. This is my last opportunity to share with you the many on-going projects which your board of directors, executive director, and members have been doing for the good of all of us connected with the driven pile industry. But first I have some important news to share with you.

Tanya Goble, who has been our executive director for almost three years, will be leaving us at the end of the year. She has done an outstanding job in bringing us out of a financial crisis to a very solvent organization, and did it without sacrificing programs or quality. She should revel in the outstanding 3rd Professors Institute which was held at Utah State University this past summer. It was the best yet. We wish her well and know that she will be successful.

However, we are very blessed to have acquired the qualified talent of Stevan Hall, who you can read about in another section of this publication. His past experience in running the Associated General Contractors of Greater Florida should provide this organization with a new dimension. Please read his Executive Director’s Message on the following page.

Four standing committees within PDCA are due some special recognition: the Environmental Committee, the Technical Committee, the Education Committee, and the Communication Committee.

The Environmental Committee, a new committee this year under the able leadership of John Linscott, has six areas of focus. I am particularly proud of two projects. The first is a vibrations and noise case history database which is being developed by Ed Hajduk, PE at WPC and The Citadel in Charleston, SC. This project is nearing completion, thanks to senior undergraduate students in The Citadel Civil & Environmental Engineering program. If you have data which you have not yet supplied, please contact our office or see our Web site. Their second project was the printing of a short, concise pamphlet, written in laymen’s terms, explaining the noise and vibrations from pile driving. These pamphlets are for our PDCA members and can be handed out to both explain and defuse the many misconceptions and myths about noise and vibrations.

The Technical Committee, Dale Biggers, chairman, is finalizing its “Recommended Installation Specifications for Driven Bearing Piles.” This document is geared for private sector work, as opposed to governmental jobs. It should be very helpful to engineers and companies looking for a quality set of installation specifications. A special thanks goes to Dr. George Goble, who has done the lion’s share of the development of this document. Garland Likins has stepped up to the plate and is helping put the finishing touches on it. The committee met bi-monthly for almost a year, using a Web-telex conferencing system that allowed for quite a bit of participation.

Our Educational Committee, chaired again by Mark Weisz, provided great programs for our Winter Roundtable Conference in Charleston, SC. The Design and Installation of Cost-Efficient Driven Piles (DICEP) conference in Boston this past September had a good turnout. What I believe made this program so special was the excellent dialogue between presenters and attendees. This was the best I have experienced.

We hope you have noticed the continued improvement of Piledriver magazine. We owe a big “thank you” to our Communications Committee, and primarily to Van Hogan, who has chaired this committee for several years. The committee has also improved our Web site, which continues to grow in available information services for all of us.

In closing, I want to say thanks again for allowing me to serve as your President. It has indeed been a privilege and an honor to be involved with this very dynamic organization. Its future looks bright, so stay involved!

Thank You, PDCA!

By Randy Dietel, PDCA President
A Whole Lot of Hammer

Introducing the new line of 12 affordable and dependable hammers from Pileco, Inc.

These hammers redefine the name you’ve come to trust for all of your pile driving needs.

Tipping the scales in your favor with quality equipment & world class support.
This is an exciting time in the history of the Pile Driving Contractors Association and an exciting time to be a part of this great organization. In 2006, the PDCA will celebrate its 10th anniversary as an association that is effectively representing the pile driving contractor and your industry.

Over the past 10 years the mission of the PDCA has been to promote the increased use of driven pile for deep foundations and earth retention systems and in all cases where driven pile solutions are effective; to reach out across the nation and internationally to support and provide educational programs for engineers, educators, and contractors on design, methodology, installation, and code; to be involved in research and grant activities designed to advance driven pile trends and technologies; and to promote the driven pile through a variety of publications produced by the PDCA committees.

Successes in all of these areas during PDCA’s first 10 years representing the driven pile industry has been attainable as a direct result of the persistence, hard work, enthusiasm, dedication, conviction, and leadership of members and staff that have dedicated themselves to this organization.

In October 2005, the PDCA Board of Directors selected me as the association’s new Executive Director. I am grateful for this opportunity and believe my previous 15 years of experience in association management will be an asset to the continued success of the PDCA.

I am excited about the PDCA’s next 10 years and see tremendous potential to advance our association because I see the tremendous potential within our members. I am confident that together, we can make great strides in promoting our industry, collectively, we are as strong as the driven pile—individually we will fail to make a significant difference.

So what is in store for PDCA members over the next 10 years? How can you make a difference and help support your association? The first thing you need to do is mark your calendar and set time aside to join your fellow PDCA members at the Winter Roundtable Annual Conference, scheduled for March 2-4, 2006, in San Antonio, Texas. The conference will be held at the Hilton Palacio Del Rio on the Riverwalk. The conference will include a series of excellent topics, informative speakers, as well as some new events designed to entertain the whole family. Registration information will be distributed in the near future, but block out the dates on your calendar today.

PDCA also needs your participation on several fronts, such as participation on one or more of our committees, which include Communications, Education, Environmental, Market...
CCA-treated piling for foundation and marine use. Common sizes in inventory: quick production on larger sizes.

Also available:
• Wolmanized® wood timbers and bulkheading material
• Vinyl sheet piling, round piling, timbers and lumber needs

Carolina Pole Inc.
Division of Cox Industries
Eutawville, SC / Leland, NC
803-492-7728
andreaecpi@aol.com
www.coxwood.com

Direct from a producer… Wolmanized® Wood Piling

Boston Conference in September
We held our 6th Design of Cost-Efficient Driven Piles Conference in Boston on September 15 & 16. This was our first conference in the Northeast and attendance was excellent, with participation from more than 85 engineers, contractors, and suppliers. Also a first: the program was qualified by New York State to award Professional Development Hours required for a professional engineer license in that state. The conference program was very well received—there are a few copies of the conference proceedings left and PDCA members can request their copy by calling Headquarters at (888) 311-7322. We want to thank and recognize our speakers for the many high quality presentations that were delivered.
Test the latest in Pile Driving Technology!

Immediate Availability for Rent, Lease or Sale!

BAUER Equipment USA
205 Wilcox Street
McKinney, TX 75069

Toll Free: 1-866-374 5574
Phone: 1-972-540 6361
Fax: 1-972-540 1411
E-Mail: info@bauerequipmentusa.com
Homepage: www.bauerequipmentusa.com

Leader in Advanced Foundation Technology
Design of Cost-Efficient Driven Piles Conference Highlights

- George Goble of Goble Consulting presented “Driven Pile Design Process.”
- Steve Dapp of Dan Brown and Associates presented “Comparing Static Axial Capacity between Drilled and Driven Piles.”
- Stephen Borg of the New York DOT discussed “Wantagh Parkway Bascule Bridge to Jones Beach, Long Island.”
- Van Komurka of Wagner Komurka Geotechnical gave two presentations on “Incorporating Setup into the Design & Installation of Driven Piles” and “Support Cost Components of Pile Foundations.”
- Billy Camp of S&ME discussed “How Driven Piles saved $7M: A Case History of a Power Plant.”
- The PDCA Technical Committee gave a preview of the new PDCA Pile Installation Code for private sector work.
- Peter Osborn of the Federal Highway Administration spoke on “High Capacity Piles.”
- Ed Hajduk of Wright Padgett Christopher presented “Pile Driving Vibrations.”
- Dick Hartman of Hartman Engineering discussed “A lesson learned from Two Bulkhead Failures.”
- J. Brian Anderson of the University of North Carolina presented “The Use of FB-Pier for the Analysis of Pile Groups.”

Thanks to Our Exhibitors!

- American Piledriving Equipment, Inc.
- Carolina Pole, Inc.
- DeNeef Construction Chemicals
- Geokon, Inc.
- The Jacques Whitford Company
- LB Foster Company
- Liebherr Nenzing Crane Company
- Pileco, Inc.
- Pile Dynamics, Inc.
- Timber Piling Council
Who Should Attend?
The Annual Conference is for contractors, geotechnical and structural engineers and anyone who deals with and supports the pile driving industry. This conference has the largest pile driving industry representation in the United States.

For Your Spouse or Guest
Plan on bringing your spouse or guest to enjoy beautiful San Antonio. This year’s spouses program includes:
- Thursday Welcome Reception
- Shopping tour of Fredericksburg, TX.
- Friday Reception and Dinner
- Morning Tea with a Special Guest

Hotel Information
Hilton Palacio del Rio, San Antonio
All conference programs and exhibits are located in the Hilton Palacio del Rio. This luxury AAA Four Diamond facility is ideally located along the famous River Walk. You’ll be surrounded by San Antonio culture and attractions.

Pre-Conference Short Courses
Wave Equations - Basic Pile Design and Installation* - Inspectors Short Course*

This Year’s PDCA Conference Features Distinct Tracks for Contractors and Engineers With Joint Tracks for both and a Roundtable Discussion

Contractor Tracks
Assessing and Mitigating the Effects of Pile Driving Noise on Fish
Horizontal Pile Driving and Cofferdams
Case Study – Value Engineering Driven Piles in Texas
Case Study – Bulkhead Failures
Geothermal Aspects of the Driven Pile

Engineer Tracks
Pile Set up on a Steel Project
Pile Driving Vibrations
High Strength Concrete Piles
Pile Capacity of Driven Piles v. Drilled Shaft
Pile Supported Embankments
and more

Exhibitors
Exhibit opportunities are available. Exhibit Hall opened from Thursday, March 2 through the end of the conference on March 4. The Welcome Reception will be held in the exhibit hall giving exhibitors an additional 1½ hours to display their products and services. Contact PDCA for more information and to reserve your table top or booth.

Contact the PDCA for more information or go to our Web site at www.piledrivers.org
PDCA, P.O. Box 66208, Orange Park, FL. 32065 • Phone 904.215.4771 • 888.311.PDCA (7322)
* Program Speakers not confirmed
Members of the South Carolina Chapter of the PDCA participated last June in a golf outing for the Lou Holtz Foundation. Participating, from left to right, were Harry Robbins (Palmetto Pile Driving), John King (Pile Drivers, Inc.), Lou Holtz, Richard Gilbert (Skyline Steel) and Don Surrency (Koppers).
2005 PDCA Board of Directors & Committee Chairmen

Randy Dietel
President
P: (409) 945-3459
F: (409) 945-4318
P.O. Box 1847
Texas City, TX 77592-1847
randy@pilinginc.com

John Linscott
Director
P: (207) 799-8514
F: (207) 799-8538
89 Pleasant Ave.
South Portland, ME 04106
john.linscott@hbfleming.com

Education Committee
Chairman: Mark Weisz
P: (707) 562-4100
F: (707) 562-4106
P.O. Box 2195
Vallejo, CA 94592
education@piledrivers.org

Education Committee Members:
Charlie Ellis, Herb Engler, Jim Frazier,
George Goble, Van Hogan, Garland Likins,
John Linscott, Rusty Signor.

Environmental Committee
Chairman: John Linscott
P: (207) 799-8514
F: (207) 799-8538
89 Pleasant Ave.
South Portland, ME 04106
john.linscott@hbfleming.com

Environment Committee Members:
Bud Abbott, Jim Bay, Ed Hajduk,
Garland Likins, Barry Roth,
Joe Savarese, Warren Waite

Market Development Committee
Chairman: Michael F. Engestrom
P: (954) 384-4545
F: (954) 337-0831
772 Sand Creek Circle
Weston, FL 33327
marketdevelopment@piledrivers.org

Market Development Committee Members:
Dean Abbondanza, Stan Baucum,
Cliff Bengston, Dave Harper, Rory Kelly,
Dean Mathews, Scott Whitaker,
Max Williams

Technical Committee
Chairman: Dale Biggers
P: (504) 821-2400
F: (504) 821-0714
P.O. Drawer 53266
New Orleans, LA 70153
technical@piledrivers.org

Technical Committee Members:
Dale Biggers, Dan Brown, Joe Caliendo,
Charlie Ellis, Jim Frazier, George Goble,
Van Komurka, Garland Likins, John Linscott,
James H. Long, Dean Matthews, Joe Phillips,
Scott Whitaker.

Finance Committee
Chairman: Trey Ford
P: (757) 497-3593
F: (757) 497-0031
4985 Euclid Road
Virginia Beach, VA 23462
finance@piledrivers.org

Finance Committee Members:
Wayne Waters, Jim Frazier,
Randy Dietel, Mark Weisz.
We design and manufacture the most advanced piling equipment for the world’s leading piling contractors.
Tourism revenue is very important to the Puerto Rican economy. A big part of that revenue is derived from the cruise ship industry. Competition between the various cruise lines is growing very intense as they continue to put more and larger ships into their fleets. These upgrades to the fleets often require upgrades to port facilities.

To meet the growing need, Cruise Pier 3 was commissioned by Royal Caribbean Cruise Lines and the Puerto Rico Ports Authority. The project involved the construction of a pile-supported pier in the bay at Old San Juan, Puerto Rico. The design for the new pier utilized a curved deck to neatly accommodate two cruise ships simultaneously and a fabric canopy over 100’ high that resembled the sails of a vintage sailing ship. The new structure would also allow Royal Caribbean to accommodate the largest ships they currently have under design and the Puerto Rico Ports Authority the opportunity to attract additional cruise ship traffic to San Juan. The new facility would also provide increased revenue for Royal Caribbean, the Ports Authority and the people of Puerto Rico.

The project owners contracted with QB Construction, S.E. of San Juan to construct the new pier. PDCA member Continental Construction Company, Inc of Memphis, Tennessee was awarded a subcontract to furnish and install the driven piles and construct the concrete deck.

The project started in March 2004 with the mobilization of test piles from the U.S. mainland for the on-site Test Pile Installation / Testing Program. By the end of the following month the test pile installations, PDA analyses, static compression, and tension tests were completed and production piles were ordered. The actual first load of production piles arrived and installation began the first of June 2004.

Over the next five months, the production piles were driven with one rig while a second barge-mounted crane constructed the concrete pier. Approximately 470, 18”x18” prestressed concrete piles, 105’ in length, were driven with a hydraulic impact hammer.

Obstacles had to be overcome early in the project. There was no supplier on the island capable of providing the project with the required prestressed concrete piles. The piles, weighing approximately 8,300 tons, had to be cast on the US mainland and shipped by barge to San Juan.

Rodney Waits, Vice President of Continental Construction stated, “The logistics of this operation were made even more difficult by the fact that almost all of the piles, which were cast in Tampa, FL and barged to San Juan, Puerto Rico...
Juan, were produced and transported during the height of 2004’s very active hurricane season.” He also noted that in the end it was “good fortune” that allowed the project to stay on track and completed without any serious damage from the storms.

Almost all of the driven piles were installed on a batter to accommodate the lateral loads imposed by ships, wind and earthquakes. Water depths at the site ranged from 15’ to 40’ and mud depths ranged from 5’ to 30’. Continental Construction constructed a two-tier template to position the piles and accommodate the various, required installation angles.

The new pier was constructed near the site of a previous pier. Based on their review of the geotechnical report, Continental Construction expected some interference problems. However, it turned out that the sea floor was littered with debris both at and below the mudline. Continental Construction worked closely with the construction manager, QB Construction SE and structural engineer, Ray Engineers PSC, to work through the conflicts by relocating piles, adding piles or redesigning portions of the pier.

The task of driving long, slender piles on a batter through underwater debris proved very challenging. Piles could be easily cracked or broken during driving so great care was exercised throughout the duration of the project. Due to the fact that the piles were manufactured far from the work site meant that there would be tremendous cost and schedule impact if the number of piles that were damaged or lost exceeded the number of “extra” piles that were added to the production pile order. Great attention to every detail was required to avoid damage. Waits said to keep everyone safe and make sure no damage occurred during pile installation, the production and quality control by the pile supplier, soil probing, template structure, hammer criteria and cushioning as well as employee supervision and training were all tailored to the specific conditions of the site.

The result of Continental Construction’s perseverance and attention to detail was a striking new pier that will serve the cruise ship industry and benefit the people of Puerto Rico for many years to come.

PROJECT SPECIFICS

Project Name: New Cruise Pier 3, San Juan, Puerto Rico

Project Description: Precast pile supported dock that extends into the bay in Old San Juan to berth Royal Caribbean cruise ships.

Piledriving Contractor: Continental Construction Company Inc., Memphis, TN.

Owner: Royal Caribbean Limited and Puerto Rico Port Authority, Miami, FL.

Architect and Engineer: Ray Engineers PSC, San Juan, Puerto Rico

Geotechnical Engineer: GeoCim, Guaynabo, Puerto Rico
When it comes to pipe inventory, Frank's is considered the largest, most complete, privately owned large O.D. pipe distributor in the U.S. Its abundant inventory of over 50,000 tons of large O.D. heavy wall pipe is stored on over 175 acres of pipe yard in Frank's four major stock points - Lafayette, Houma, the Port of Iberia, LA and Alvin, TX. These strategic locations offer easy access to the company's primary marketing areas along the Gulf Coast.

Frank's inventory and services include:

Pipe procurement and inventory management

Inventory of line pipe in diameters ranging from 14” thru 72” in grades API 5L Gr. B, X-42, X-52, X-56 and X-60

Larger diameters ranging from 48”- 72” in grades ASTM A 36, API 2H Gr.50 and ASTM A 572 Gr. 50

Overseas pipe suppliers: JFE, Seah, Sam Kang, Nippon, Sumitomo, EEW, Vallourec, Mannesmann and Corus

Domestic Pipe Suppliers: SAW Pipes and Berg Steel

In addition to a vast pipe inventory, Frank’s sets itself apart from the competition by offering a myriad of custom welding services in its fabrication facilities.
Part IV

Vibratory-Pile Monitoring

If correct instrumentation is applied to the vibratory driver/extractor, driven pile, and even soil; it’s then possible to monitor: i.) the performance of the vibro-equipment, ii.) developed forces and stresses within the pile, iii.) the dynamic soil response, developed pore pressure and eventually induced settlements, together with iv.) magnitude of generated ground vibrations. Furthermore, if contemplating such tasks, several factors need to be considered (different in comparison to monitoring of impact driven piles) and therefore mentioned in the following paragraphs.

Fundamentals

The reader should bear in mind that the key factors related to the use of vibratory drivers/extractors are fundamentally different than conventional impact hammers. Not only does the pile penetrate the soil in a different way (sinusoidal downward directed motion due to the sine force), it also disturbs the soil surrounding the pile in a different way. Since stress waves don’t exist within the pile, it is necessary to have sensors both at pile head and toe in order to assess the developed magnitude of dynamic soil response and the driving force delivered to pile head.

Vibro-Instrumentation

Factors of interest and corresponding sensors necessary for monitoring of vibratory driver-related parameters consist of the following.

Magnitude of static surcharge force, \(F_s \), can be monitored by using either a load cell in the case of a free-hanging vibrator, or by an oil pressure transducer in the case of a leader-mounted vibrator. The pressure transducer monitors applied hydraulic pressure in the hydraulic cylinder of the leader mast (see Fig. 1).

Magnitude of eccentric moment, \(M_e \), in the case of using a vibro-unit with the possibility to vary \(M_e \) on the fly. This is accomplished by mounting a sensor within the vibro-unit to register the relative position of the adjustable eccentric masses.

Penetration depth, \(z \), to monitor the vertical position of the driven pile when it’s driven into the ground, makes it possible to correlate other parameters with penetration depth, i.e., stratigraphy. This is normally accomplished by using a thin steel wire connected to a depth-measuring drum.

With the above-mentioned sensors, it’s possible to monitor the performance of the vibro-equipment, i.e., compare theoretically generated driving force with that’s actually generated/produced.

It can also be justified, but more from a research point of view, to mount accelerometers on both the vibrating and non-vibrating parts of the vibro-unit, to monitor actually generated acceleration and/or verify that the bias-mass doesn’t vibrate.
Pile Instrumentation

The pile-related instrumentation needed to monitor encountered SRVD consists of the following.

Near pile head: at least one axially directed accelerometer and preferably two strain gauges. Accelerometer is for monitoring the magnitude of developed inertia force, and strain gauges are for monitoring the magnitude of delivered driving force \(F_d \) (like the PDA analyzer™).

Near pile toe; an equal set of transducers as at pile head. Strain gauges to monitor developed dynamic soil resistance at pile toe \(R_t \), and an accelerometer to monitor magnitude of developed inertia force and to verify assumption of axial pile rigidity. Double integration of acceleration signals provides information of the penetrative motion of the profile as well as magnitude of displacement amplitude.

It can also be justified, but more from a research point of view, to mount accelerometers laterally/transversally, (especially on slender piles), for the purpose of studying the magnitude of lateral motion.

With results obtained from the above-mentioned sensors, it’s possible to calculate: i.) the dynamic soil resistance along the shaft \(R_s \), ii.) the penetration speed \(v_p \), iii.) displacement amplitude \(S_p \), iv.) penetrative motion \(u(t) \), v.) system efficiency \(\xi \), and vi.) verifying that the pile can be treated like a rigid body. Sources on how to accomplish this in great detail can be found in [14], [15] and [16].

Soil Instrumentation

Soil-related factors needed to monitor primary soil mechanisms behind the shear strength reduction of SRVD, should consist of the following parts.

Magnitude of induced ground vibrations can be assessed by using either geo-phones or accelerometers (preferably tri-axial geophones and/or accelerometers) positioned at different radial distances (and depths) from the driven pile. Magnitude of induced pore pressure at different depths and radial distances in relation to intended position of pile to be driven. This can be accomplished by installing pore pressure sensors prior to pile installation.

Other Instrumentation

The relative ease (read \(v_p \)) of vibratory driving, which is the result of the dynamic equilibrium of the vibrator/pile/soil system, can easily be assessed by using a digital camcorder that registers the time differences of depth marks (painted on the side of the pile) as it enters the soil.

Fig. 9a schematically illustrates a simple but useful paper sticker for monitoring the actual peak-to-peak displacement amplitude \(S_p \) of the pile as it slides into the ground. The stickers are glued onto the pile at 5 ft intervals and ocular readings of \(S_p \) are taken as they slide by the observer. Results of \(S_p \) can then be plotted versus penetration depth.

Furthermore, even though dynamic
vibratory pile monitoring is not included in the PDA features of today, the authors [7] are of the opinion that it's possible to use a PDA analyzer™ (with some caution and modifications). Obtained results can provide the engineer with a wealth of beneficial information on which to base his/her design recommendations.

Summary

It’s well known that impact hammers usually is the conventional method to use in order to install bearing piles. However, sometimes the vibratory technique should be considered as a suitable alternative when favorable soil conditions are present. It is also well known that piles driven into granular soils can be installed more efficiently by the use of a vibratory driver compared with impact hammers. However, the use of the vibratory technique is seldom regarded as the first choice, since the technique is historically constrained by uncertainties regarding the ultimate pile capacity. However, when opportunities arise, e.g., having suitable subsurface conditions and a fair amount of piles to be installed, it's anticipated that the use of this method can result in a tremendous reduction in installation costs.

Basically, the main ingredients for future tentative attempts of using the technique exist. New vibro equipment/machines with new features are constantly developed. These attempts should, however, include the following: the properly equipped vibratory system, a skilled geotechnical engineer with a bit of ‘vibratory know how’ and previous experience with this technique. An extensive pile trial program should be undertaken prior to installing production piles, with the purpose of eradicating all uncertainties including: i.) restriking, ii.) static load tests, iii.) documentation procedure for the production piles, together with iv.) well-defined instructions of how to end the vibro-installation phase. Although the knowledge of these mentioned ingredients is scarce, together with the fact that there are not many well-documented cases available, it’s still anticipated that the technique has significant potential if used under the right circumstances.

References

The damage done by the earthquakes of 1989 prompted the California State Legislature to mandate a statewide bridge seismic retrofitting program. The San Francisco-Oakland Bay Bridge was one of the largest elements in the seismic retrofit plan.

A 1.1 mile span of elevated highway, which connects to the actual bridge, was of major importance to the vitality of downtown San Francisco. Approximately 246,000 vehicles use the approaches on a daily basis.

Due to this heavy volume of traffic, engineers pinpointed it as a major problem area. The strategy for strengthening the elevated approaches was to add deeper pilings, larger foundations, and stronger support columns.

Mandal Pipe Company has been an integral participant in the retrofit project, supplying 105,000' of 24" diameter, 3/4" thick steel pipe to be used as piling. With on time delivery, Mandal Pipe Company supplied a quality product, at a tremendous savings to the contractor.
The ongoing joint research effort between Pile Driving Contractors Association (PDCA), The Citadel, and WPC Inc. to develop a pile driving noise and vibration case history database is approximately 75 percent complete. Deemed a critical first step in future research regarding noise and vibrations due to pile driving, the research effort is proceeding along its planned timeframe.

Three senior undergraduate students in the Civil & Environmental Engineering program at The Citadel are working on the project. Cadet David Falatok is from Spartanburg, South Carolina and he has plans to attend a graduate school in the fall of 2006. Cadet Tom Hill is from Greenville, South Carolina and he intends to pursue graduate studies in structural engineering in the fall of 2006. Officer Candidate Tim Perkins is from South Portland, Maine and he will either attend graduate school or reenter the US Naval Nuclear Power School with hopes of attending graduate school for nuclear/structural engineering. The students are participating on the project through The Citadel’s Undergraduate Research and Design Initiative co-founded by Assistant Professors Timothy W. Mays and Kevin C. Bower in the Department of Civil & Environmental Engineering. The program is supported by industry and research grants which allow students to prepare for life after graduation. The focus of the initiative is fostering student development and generating realistic expectations for graduate school and/or the consulting world. The industry response has been surprising. Mr. Edward Hajduk, PE of WPC and the PDCA Project Coordinator, has given several presentations about the development of the database across the country. “The industry is very receptive to the request for data and the development of the database. Other industry organizations such as the Deep Foundations Institute (DFI) and the American Society of Civil Engineers (ASCE) have been very gracious in helping us.
spread the word. When Dr. Michael H. Wysockey, chair of the DFI Driven Pile Committee, found out about our efforts, I couldn’t send him information about how to help fast enough.”

To date, the following tasks have been accomplished:

- A literature survey regarding pile driving noise and vibrations has been completed. A bibliography of the relevant technical literature has also been completed.
- A questionnaire has been developed and sent to PDCA members. This questionnaire, modeled after a pile driving vibration study done by Dr. Woods at the University of Michigan in 1997, asked member firms and individuals about their experience with vibrations and noise issues related to pile driving. Attached to the questionnaire was a request for providing data to the database along with contact information regarding its development. So far the questionnaires have had an 18 percent response rate from the PDCA members list and a 48 percent response rate from the various state Department of Transportations (DOT’s). Final results from the questionnaire will be provided to the PDCA when the database is submitted.
- Case history data from industry and technical literature sources has been collected. To date, 81 pile driving vibration and/or noise case histories have been received by the research team. A summary

<table>
<thead>
<tr>
<th>Company</th>
<th>Contact</th>
<th>No. of Case Histories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gannett Fleming</td>
<td>Mr. Syed A. Ashraf, PE</td>
<td>1</td>
</tr>
<tr>
<td>Geosciences Testing and Research, Inc</td>
<td>Mr. Les Chernauskas, PE</td>
<td>29</td>
</tr>
<tr>
<td>GZA</td>
<td>Mr. Michael Derry, PE</td>
<td>4</td>
</tr>
<tr>
<td>Foundation Pile</td>
<td>Mr. Russ Taylor</td>
<td>6</td>
</tr>
<tr>
<td>H.P. Fleming</td>
<td>Mr. John Linscott</td>
<td>1</td>
</tr>
<tr>
<td>WPC Inc.</td>
<td>Mr. William B. Wright</td>
<td>40</td>
</tr>
</tbody>
</table>

David Falatok, Tom Hill, and officer candidate Tim Perkins sort through some of the 450 questionnaires sent out as part of the project.

Protect the Fishery

GUNDERBOOM

Sound Attenuation System (SAS™)

Particulate (Silt) Control System (PCS™) • Design and Consulting Services

In Partnership with Seventy Percent of the Earth

GUNDERBOOM, INC.
210 Hickman Dr.
Sanford, Florida 32771

www.gunderboom.com
Ph: 407.548.2200
888.345.2666 (BOOM)
Fax: 407.548.2230

CONMACQ

DEPEND ON OUR QUALITY BENEFIT FROM OUR EXPERIENCE

800-259-7338
www.conmacq.com

PILEDRIVER • Q3 • 2005
of the various contributors is provided in Table 1. Of these 81 case histories, 25 have been reviewed and prepared for entry into the final Microsoft Access database.

The final phase of the project, which is the development of a Microsoft Access Database for all the case history data, is currently underway. The research team expects to present this database to the PDCA in early 2006. Prior to case history entry into the database, the team has reviewed the provided data to verify that it contains valid, relevant information relating to pile driving vibrations and noise. Where possible, the research team has attempted to contact the providing agency/firm/individual to provide clarification of data and/or additional information. While the team does not anticipate that every desired data field will be available within the collected data, it should be noted that all relevant data will help in the understanding and study of pile driving vibrations and generated noise.

According to Professor Mays, “Mr. Hajduk and WPC have provided an invaluable experience for our students. It is evident in their return to campus this Fall, that Mr. Hajduk has had an outstanding personal impact on their lives and their appreciation for the work that consulting engineers do.” According to Mr. Hajduk, “the work ethic and leadership of the Citadel Cadets exceeded my highest expectations. It was a privilege to serve as their research adviser.”

The conclusions drawn from the future study of the Noise and Vibration Database depend upon the amount and quality of data collected. Every bit of data adds to the value of the database. While the research team is pleased with the amount of data collected to date, more is needed. Please contact the PDCA if you have noise and/or vibration data that you can contribute to this project. Help us to make this database a truly useful tool in the future use of the driven pile.
Stockers and Suppliers for the Pile driving Industry

Sales and Rentals Steel sheet Piling

Hot Rolled Steel Sheet Piling to Steel Grade A572 Gr 50
PZ 22 PZ 27, PZ 35, PZ 40

Cold Formed Steel Sheet Piling to Steel Grade A572 Gr 50
Lightweight, Intermediate and Heavy

Stockers of Carbon Steel Pipe

Astm A 252 for Pipe Pile Made to Length on Request

Full Range of Astm A 53 and API 5L Welded and Seamless Pipe
Sizes 2” to 48” all wall thicknesses and Sizes
Grades B X42,X56,X60,X65

Stockers of H-Pile

Steel Grade A572 GR 50
HP 14 x 73,89,117
HP 12 x 53,63,74
HP 10 x 42,57
HP 8 x 36

Additional Services and Products

Tie Rods, Walers, Coating, Anchor Bolts
Pile Tips and Shoes & Splicers
PZ 90

Applications: 90° corner (~50° to ~130°)

Weight: 7.3 lbs/ft (10.9 kg/m)

Steel grade: Astm A572 Grade 50 (S 355 GP)

Proper Interlocking Examples

Each interlock has a typical degree swing of 20° (+/- 5°) so that the probable swivel range is 40° (+/- 10°) when interlocking two PZ sheets via the connector.

Installation Guidelines:

1. Thread the connector into the interlock while the sheet pile is out of the ground.

2. Adjust the connector to the appropriate position.

3. Tack or spot-weld the connector in place (typically a 10" weld attaching the connector to the sheet pile at the top is sufficient.)

4. Drive/extract the sheet (with the connector attached) as you would normally.

V20

Applications: 90° corner (~25° to ~155°)

Weight: 8.9 lbs/ft (13.2 kg/m)

Steel grade: Astm A572 Grade 50 (S 355 GP)

Available for immediate delivery, nation-wide

www.PilePro.com call for quote (866) 666-7453
For PZ and PZC (Ball + Socket)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZ 90</td>
<td>Corner (~50° to ~130°)</td>
<td>Page 3</td>
</tr>
<tr>
<td>PZ Tee</td>
<td>Tee Corner (~50° to ~130°)</td>
<td>Page 4</td>
</tr>
<tr>
<td>Joker</td>
<td>Tee Corner (~50° to ~130°)</td>
<td>Page 5</td>
</tr>
<tr>
<td>Bullhead</td>
<td>Tee Corner (~50° to ~130°)</td>
<td>Page 6</td>
</tr>
<tr>
<td>CBF</td>
<td>Tee Corner (~50° to ~130°)</td>
<td>Page 7</td>
</tr>
<tr>
<td>Colt</td>
<td>Corner (~25° to ~65°)</td>
<td>Page 8</td>
</tr>
<tr>
<td>Cobra</td>
<td>Corner (~115° to ~155°)</td>
<td>Page 9</td>
</tr>
<tr>
<td>PBS-M/ PBS-F</td>
<td>PZ / PZC + Peiner Beam</td>
<td>Page 10</td>
</tr>
<tr>
<td>BBS-M/ BBS-F</td>
<td>PZ / PZC + Domestic Beam</td>
<td>Page 11</td>
</tr>
<tr>
<td>WOM/ WOF</td>
<td>PZ / PZC + Pipe Pipe</td>
<td>Page 12</td>
</tr>
</tbody>
</table>

For All AZ and Hoesch 1706, 1806, 1856 and 1906 (U-Piles/Larssen)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y 20</td>
<td>Corner (~25° to ~155°)</td>
<td>Page 13</td>
</tr>
<tr>
<td>YTS</td>
<td>Tee Corner (~45° to ~135°) Circular driving</td>
<td>Page 14</td>
</tr>
<tr>
<td>YT</td>
<td>Tee Corner (~45° to ~135°) Omega corner</td>
<td>Page 15</td>
</tr>
<tr>
<td>Omega 12</td>
<td>Omega corner Jagged U-Walls</td>
<td>Page 16</td>
</tr>
<tr>
<td>Y 22</td>
<td>Larsen Interlock + Pipe Pile Weld-on</td>
<td>Page 17</td>
</tr>
<tr>
<td>PL</td>
<td>Larsen Interlock + Peiner Beam</td>
<td>Page 18</td>
</tr>
<tr>
<td>PLZ I/ PLZ II</td>
<td>Peiner Beam + Larssen-Z Piles</td>
<td>Page 19</td>
</tr>
</tbody>
</table>

For Hoesch-Z Piling (with a width of 22.64 inches or 575 mm)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HZ 90</td>
<td>Corner (~45° to ~135°)</td>
<td>Page 20</td>
</tr>
<tr>
<td>HZT</td>
<td>Tee Corner (~45° to ~135°)</td>
<td>Page 21</td>
</tr>
<tr>
<td>HZ</td>
<td>Variable weld-on</td>
<td>Page 22</td>
</tr>
<tr>
<td>PHZ-Claw (PZL)</td>
<td>Hoesch-Z + Peiner Beam</td>
<td>Page 22</td>
</tr>
<tr>
<td>PHZ-Knob (PZR)</td>
<td>Hoesch-Z + Peiner Beam</td>
<td>Page 23</td>
</tr>
</tbody>
</table>

For Hoesch-Z Piling (with Hoesch Interlock and a width of 30.15 inches or 675 mm)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HZn 90</td>
<td>Corner (~45° to ~135°)</td>
<td>Page 24</td>
</tr>
<tr>
<td>HZTn</td>
<td>Tee Corner (~45° to ~135°)</td>
<td>Page 25</td>
</tr>
<tr>
<td>HZn Knopf</td>
<td>Weld-on</td>
<td>Page 26</td>
</tr>
<tr>
<td>HZn</td>
<td>Variable weld-on</td>
<td>Page 27</td>
</tr>
</tbody>
</table>

For PS-Flat Sheet

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWC 120</td>
<td>120° Y Pile</td>
<td>Page 28</td>
</tr>
<tr>
<td>SWC 90</td>
<td>90° Tee Pile</td>
<td>Page 29</td>
</tr>
<tr>
<td>SWC 60</td>
<td>60° Y Pile</td>
<td>Page 30</td>
</tr>
<tr>
<td>SWC 30</td>
<td>30° Y Pile</td>
<td>Page 31</td>
</tr>
<tr>
<td>SWC</td>
<td>Weld-on</td>
<td>Page 32</td>
</tr>
</tbody>
</table>

Sealing sheet piling

- WADIT® Non-toxic hot cast interlock sealant impervious to weather | Page 33

To request a complete brochure, please contact PilePro: 866.666.7453 866.626.7453(fax) info@pilepro.com
1979 was a very good year indeed. For Rusty Signor, it meant the start of Signor Enterprises in Austin, Texas. With wife Beth Ann by his side, Signor launched his company with the prospect of serving America with marine installations of pilings, boat docks, bulkheads, and driven piling foundations for residential homes and commercial buildings.

“About half of my jobs are driving pilings for large custom homes,” Signor says. “And then the other part we do marine installations. We’re very mobile. We use our mobile barges for drillings, test holes, repairing dams and bridges, geotech analysis and disaster response.” “We’re constantly getting bigger equipment and better equipment. We just bought a new air-driven pile driving machine from Pileco, which we found out at the [PDCA] convention. Our capacity for production has gone up about 40 percent, and that’s been real beneficial.”

Signor is at the top of his game. Yet he would not be there without the aid of his remarkable employees. With about a dozen full-time employees on staff, Signor believes that their talent and reliability is the foundation for his success. “Employees, employees, employees,” Signor says. “They’ll take care of your customers.”

When it comes down to a typical project, Signor makes the initial contact and assumes care of the sales. Then the staff takes over from there. Signor has called himself merely the figurehead for the operations, claiming that the quality of his staff is what decides how the client relations will be handled.

“We get a lot of compliments every month [for the employees]. While receiving a check from any client is gratifying, frequent follow-up compliments from customers always overwhelm me,” he says. The staff of Signor Enterprises tend to become long-term employees, working their way to the top from the bottom-up. Opportunity presents itself so consistently for his employees because Signor chooses to not micro-manage.

Signor used to be on every job, driving the tug boats, operating the tractors and more. However, over time he has come to realize that he gets better development and employees come up through the ranks much faster should he step back a little. “I’m not holding anyone down,” he says. Applying this knowledge to many sites, he’s used value engineering to lower the costs. “Value engineering is probably my biggest forte,” Signor says.

On one project Signor is particularly proud of, his company saved a client $130,000 and resurrected a dead job for an airport hangar though the use of value engineering. Although not an engineer, he has still managed to find different components that are economical.

After a budget for a job at San Marcus Airport was deemed too expensive due to complications associated with expansive clays, old taxiways, and buried concrete left behind by an old hangar that had burned down years before, Signor and his team came back with a cost-saving proposal to drill pilot holes through all of the anomalies and then drove pilings. They accomplished this in three days and managed to pour all of the foundation as flatwork. Instead of a structural foundation, costing $8.50 a square foot, they did it for $3.05 a square foot, saving a great deal of money for the customer and rendering the whole project viable. “And we did it expeditiously,” Signor says. “You can save money or take a lot of time, but that’s no good. It’s got to be both [save time and money].”

When asked about the project of which he is most proud, Signor responded, “We built a boat dock that beat out close to 200 architectural entries, including a university, an airport, a country club, and a hotel. I was really tickled about that. The architect told me to do the structure how I wanted to do it and help him with the steel components. Then we had an engineer that sealed it all. I think they won nine national, international, awards for it. That was a really fun, fun project.”

Considering the money and time Signor saved his client, it’s no wonder he doesn’t feel the need to advertise for his

PDCA Member

Rusty Signor of Signor Enterprises

By Lindsay Williams
company. Ninety-eight percent of our work is all referrals, he says. Signor Enterprises relies on a system of vertical operations. They own the equipment, complete all the sales, create the designs and produce the services. Very little is ever subcontracted out.

Therefore, it is in Signor’s best interest to be a part of PDCA. As a member of this trade organization for the past four years, Signor attends conventions to keep abreast of technological issues and acquire mentors who dispense vital advice on the first ring of a phone call. Signor says, “I’m very sincere. If you’re in the business it’s absolutely stupid not to get [to conventions] to get solutions, to communicate pile driving problems, testing results, and mentoring from highly qualified individuals with pile driving experience.”

Many customers commend Signor for his work, but he turns right around and gives all the praise to the PDCA. Upon joining PDCA, Signor breathed a sigh of relief, seeing that people from all over the nation, and the world were running into all the same problems. “People have forgotten how proven piles are and they are relying on drilled piers. And since I’ve gotten into PDCA, I can think of at least four customers that I was able to convince the structural engineers to change their techniques. I have a customer that we saved $30,000 on, another customer that we saved $130,000 on and another customer that called me and said, “Rusty, I have wasted time and $10,000 in engineering fees because these people kept saying ‘drill piers, drill piers,’ and I can’t believe I didn’t find you until now,” and I am so tickled about this. All of these are the result of the information and education I’ve gotten from the PDCA.”

When asked about the major benefits to using driven piles Signor responded, “…We can look at the inside of the pile [to confirm the] integrity of the pile. It just takes all those anomalies out of the equation.” He considers one of his greatest challenges educating the engineering profession “about the advantages of piles and trying to get rid of any of the preconceptions that have lingered for years about pilings. For instance, about how noisy they are, how much they vibrate, how costly they are. These are all preconceptions that are erroneous.”

When it comes to safety, Signor understands the need for the best trained employees. This is why Signor Enterprises employees take OSHA safety courses every two years and have safety meetings every week. “Insurance is a major problem and so safety is the safety net for that,” Signor says.

Signor stressed quality control and process improvement as an important aspect of the job. “All of our equipment and personnel are trained and certified in everything they do. We keep up on the latest technology, information, and bulletins. Every job that I’ve worked on has had an architect and an engineer. The engineer monitors our job and certifies our job at the end. And that probably is the biggest learning process for me, because to listen to every engineer on every job, you can’t help but pick up things.”

Signor and his wife Beth Ann have three children, Jason, Celeste, and Clayton and a Granddaughter, Libby. His volunteer interests are the Boy Scouts; he serves as chaplain for a juvenile institution and he teaches writing clinics to a Christian youth organization, Adventures Unlimited.
Precast, prestressed concrete piles offer a range of advantages, particularly in corrosive environments, but proper installation is the key to maximizing the advantages.

By John S. Dick, Structures Director
Precast/Prestressed Concrete Institute, Chicago, IL

Precast, prestressed concrete piles are the preferred choice for durable and economical foundations, especially in marine environments, due to their excellent versatility and resistance to corrosion. A range of sizes and shapes are available, and the material’s manufacturing process continues to create new techniques that expand its potential. But to maximize the benefits of precast piles, engineers and contractors must recognize the related handling and installation methods.

Smaller pile sizes, 10 to 14 inches, often are used for building projects such as convention centers, hotels, parking structures, and other large facilities. Larger piles, as big as 66-inch-diameter hollow cylinder piles, are used for bridges and as columns at bents in marine applications. Prestressed concrete piles can be designed to safely support the heavy vertical loads imposed by these types of structures as well as the horizontal loads caused by the range of factors, from traffic, wind, and earthquakes to waves and vessel impact.

Prestressing Is Key

The key to precast concrete piles’ strength lies in the use of prestressing techniques applied during manufacture. Typically, prestressing is applied to piles using pretensioning steel strands in long line casting beds. In most cases, the prestressing strands are the only longitudinal reinforcement in the piles. The prestressing process introduces compression into the pile, which counteracts the tensile stress resulting from handling, driving eccentricity, and stress waves generated during driving. Under service conditions, this compression allows piles to resist axial tension and bending stresses.

Concrete strength for precast piles is usually a minimum of at least 5,000 psi. Precast piles can be fabricated with high-strength concrete that can reach strengths as high as 8,500 psi if needed. Higher strengths, up to 15,000 psi, can be accomplished but is not recommended due to economy and the extra time required to produce the piles.

Precast concrete piles have been used for more than 50 years. In fact, one of the most significant projects to use precast piles will celebrate its 50th birthday in 2006: the 24-mile-long Lake Pontchartrain causeway connecting New Orleans on the south with Saint Tammany Parish on the north. The precast bridge used 54-inch-diameter hollow piles with a 4.5-inch wall cast in 16-foot sections, which were then post-tensioned. The bridge will celebrate its half-century despite the impact of Hurricane Katrina—an indication of precast’s durability and strength.

Key Pile Shapes

In the 1950s, one of the most common shapes was an 18-inch-square section. As demand increased, new shapes, including circular and octagonal, were produced. Larger, hollow designs in these shapes also appeared. Today, a wide range of designs and types of piles are available, varying by region and manufacturer. Most piles, however, are square, octagonal or round (cylindrical) in cross-section.
Square piles are the simplest to manufacture and are generally available throughout the United States. The larger sizes of square piles may be cast with circular internal voids to reduce the pile weights. The voids also will reduce the number of strands necessary to achieve the same effective prestress, but that in turn reduces the bearing capacity if flexural capacity is needed. This shape requires fewer strands to obtain the same effective prestress and reduces the weight of the pile for shipping and handling.

Octagonal piles are popular in most areas due to code changes that make ductility more of a governing requirement for seismic design. Strands typically are positioned in a circular pattern confined within a circular spiral. These piles often are more economical than square piles because of the material savings that can be achieved. They can also be made with circular internal voids.

Cylinder piles often are used with bridges and other marine structures where foundation members require exceptionally large axial, buckling or bending capacities. They also can be extended into pile bents at the superstructure level, eliminating the need for a separate column. In some cases, cylinder piles are spun-cast in segments that are joined together and post-tensioned to form the completed pile.

Another method of producing cylinder piles is with a collapsing coreform, which is placed in the form and held in place during the concrete pour. After the concrete has reached

Precast, prestressed concrete piles are available in a wide range of shapes.

This 12-inch, 85-foot-long precast, prestressed pile is being driven with a hydraulic hammer that includes an auger on the side so the pile can be dropped into a 55-foot-deep hole prior to driving it.
In some cases with bridge projects, transporting the precast piles by barge creates an efficient approach.

sufficient transfer strength, the core is collapsed and extracted, leaving the necessary void. This method is favored in high-seismic zones where continuous rebar is required.

Precast concrete piles can be spliced together to create longer piles. They are used primarily where longer piles are required but transportation needs make the longer lengths more difficult or costly to handle due to escort needs and the need for specialized rigs. Transportation limitations vary by region. In some areas, 12-inch piles as long as 115-feet can be transported with no difficulty, and piles up to 135 feet can be hauled with special rigs. When large piles are used on bridge projects, it may be possible to transport the piles to the site on barges, eliminating highway restrictions.

Many Benefits Result

Piles benefit from many of the advantages generally provided by precast, prestressed concrete components. These include economy and reduced energy costs from using local materials and manufacturing, fast, easy and reliable availability, plant-controlled quality of finish and tolerances, and reduced fabrication and construction times. Precast concrete piles offer additional specific advantages:

- High load capacity. Prestressed concrete piles provide high axial load-carrying capacities. With a higher allowable load per pile, fewer piles are needed, which may result in smaller footings and generally lower costs per unit of weight supported. In many cases, the key limitation on the axial capacity of prestressed concrete piles is soil condition.
- High durability. The combination of dense, high-quality concrete and permanent axial compressive stress along the length of the pile results in a product with minimal cracking and high resistance to moisture penetration. Both experience and accelerated corrosion tests have proven that prestressed concrete piles are extremely durable, even under the most severe conditions of exposure.
- High adaptability. Precast piles are highly engineered, manufactured products. As a result, their composition can be adjusted in the fabrication process to include more prestress rebar, higher-strength concrete with more capacity, specific or...
The evolution of effective barrier systems continues with higher strength to weight ratio steel sheet piling... wider, lighter, stronger. PZC. Get the facts.

www.sheet-piling.com
Because precast piles are cast under controlled conditions in the plant, they offer a consistent, high quality of fabrication.

unique connections to bridge caps and corrosion inhibitors. Designers can control and adapt the material to ideally suit the specific environment and construction situation into which the piles will be placed.

• Ease of handling, transporting and installing. The uniform axial compression, overall strength and increased lateral stiffness in any direction means that fewer lift points are required. This facilitates transportation and handling and contributes to lower overall installation costs.

• Ability to resist hard driving stresses. The overall strength of the precast concrete piles, together with the axial compression induced by prestressing, permits them to undergo hard driving through loose or dense soils using high-energy hammers. In extremely hard driving conditions, the pile's ability to resist high tension waves may be improved by increasing the effective prestress.

• Increased capacity and column strength. The relatively large tip area allows prestressed
concrete piles to resist substantial loads in end bearing to supplement resistance provided by skin friction along the piles’ surfaces. The bending resistance of piles subject to eccentric or lateral loads can be improved by increasing the effective prestress in the pile.

- Resistance to uplift. Prestressed piles can be used effectively in tension for bridge projects. A high degree of uplift generally can be resisted by the weight of the pile and by the transfer of tension forces from the pile to the soil across the pile-soil interface.
- Densification of surrounding soils. The vibration of granular soils during the driving process tends to compact the material surrounding the piles so that it becomes denser as successive piles are driven. This densification increases the available unit friction. Solid prestressed concrete piles displace a larger volume of soil during driving compared to shell or H types, which tends to compact the soil further.

Considerations When Using

The benefits that precast, prestressed concrete piles can provide make them a strong choice for many applications, but they are not always the specified choice. This is due in some cases to a lack of understanding about their capabilities and unfamiliarity by local contractors with installation methods. Steel piles are well-known, and steel's capabilities are taught in college engineering courses. As a result, graduates arrive in the field with a strong familiarity with those capabilities and load tables. Precast piles are discussed less often, making designers less familiar with how to convert load needs into a moment connection and to determine its location.

And indeed, precast piles require a different driving methodology than steel piles. Typically, a heavyweight hammer with a low impact velocity is used, with a 4- to 5-foot stroke, instead of the 12-foot stroke often used for steel piles. In some soils, high impact velocity, single-acting diesel hammers are used. It also works best to cushion the top of the precast, prestressed pile with 4 to 15 inches of plywood to keep the hammer in contact with the ram longer. This allows it to develop a longer stroke and increases the penetrating power of the pile.

Market Is Growing

The benefits provided by these piles, and the economics of today's construction market, make a strong case for designers and contractors to learn about the potential and specify them more frequently. Although cement prices have been rising, prices for other materials have risen considerably more, making precast concrete piles a strong economic competitor.

Precasters are reporting more and more designers and contractors are finding applications for precast, prestressed piles as contract budgets are strained. This leads to a wider use of the piles and a better, higher-profile understanding of the many benefits they provide.

Special thanks to the engineers at Atlantic Metrocast in Portsmouth, Va., Bayshore Concrete Products in Cape Charles and Chesapeake, Va., Davis & Floyd Inc. in Greenville, S.C. and Pomeroy Corp. in Perris, Calif., for their contributions to this article. ▼
We are the premier association for pile-driving contractors

The PDCA was founded in 1996 to promote use of driven-pile solutions in all cases where they are effective. We strive to build and maintain working relationships among end users, manufacturers, government agencies, educational institutions, engineers and others involved in the design, installation and quality control of the driven pile.

We are dedicated to advancing the driven pile

As the only organization solely dedicated to pile-driving contractors, we know that you understand the superiority of the driven pile in most applications. We are the only association addressing the intrusion of non-driven solutions that take away business from the driven-pile contractor. The PDCA understands that to survive in today's competitive marketplace, a pile-driving contractor must strive to stay abreast of the latest trends and technologies in the industry. That is why we maintain close ties with the world's leading suppliers to the industry. It's why we provide a broad range of educational programs for university professors, practicing engineers and contractors. And, it's why more and more contractors, engineers and suppliers are realizing that the PDCA significantly increases their value in the marketplace.

We are a direct link to decision makers

Major manufacturers take an active role supporting the PDCA. At our conferences, we bring together the world's leading design manufacturers and technical application experts to assist you in advancing the driven pile as a superior product.

The PDCA works closely with the technical community to format design codes and installation practices. We offer seminars throughout the country for engineers and educators on the capabilities and advantages of the driven pile. We also work with agencies, such as the Federal Highway Administration and state DOTs, which develop specifications for highway building and other infrastructure projects that use driven piles.

We offer timely, valuable services

The PDCA improves your company's bottom line, as well as your stature in the construction industry, through a variety of programs and services:

Job Referrals

We are the only organization that provides contractor referrals to end users of driven piles. You tell us where you will drive piles and we will refer you to end-users. We also provide referrals to our supplier and technical members.

Peer-to-Peer Opportunities

With more than 100 contractor members, networking opportunities abound at the PDCA. Whether at our Winter Roundtable, our regional seminars or by just picking up the phone, you'll develop long-lasting professional relationships and friendships in the industry.
Annual Membership Directory
As a member, you’ll receive PDCA’s annual membership directory of our contractor, supplier and technical members. Your company is listed along with the piling solutions you employ and states in which you work. This directory is provided throughout the year to construction users on a complimentary basis.

Educational Conferences and Meetings
The PDCA offers cutting-edge education for contractors, engineers, geotechs and anyone else interested in the driven pile and its applications at two major conferences annually. Members receive discounts on exhibit and registration fees.

• The Winter Roundtable, held each February since 1997, is a nationally recognized conference that brings together leading technical experts, suppliers to the piling industry and contractors. This conference focuses on the key issues faced by pile-driving contractors and features discussions and presentations as well as an extensive exhibit area.

• The Design and Installation of Cost-Efficient Driven Piles Conference (DICEP), held each September since 2000, is a nationally recognized two-day conference that brings together geotechnical and design engineers, college professors and contractors to discuss the latest trends in understanding, analyzing and controlling piling costs.

Industry Development
The PDCA continually strives to expand market share for the driven pile. The PDCA sponsors the College Professors Piling Institute, held at Utah State University in Logan, Utah. Up to 25 professors, from major engineering schools, are invited to participate in an intensive, week-long program that presents them with the latest concepts in driven-pile design, installation and quality control. Some of the leading faculty in the deep foundation field has attended the institute to date. The program supplies the educators with the tools and knowledge to be able to teach their students about the advantages of the driven pile. It promises to have a long-term impact on market share for the driven pile.

Publications and Reference Materials
As a PDCA member, you will receive our quarterly publication, “Piledriver,” which presents articles on issues and trends of interest to our industry. As a member, you’ll receive discounts on advertising in the magazine.

All PDCA members receive a complimentary copy of the PDCA’s codebook, “Recommended Design Specifications for Driven Bearing Piles,” now in its third edition. This book covers all required guidelines for driven piles and includes a suggested bid and payment schedule.

The PDCA also sells “The Pile Design Manual,” an FHWA manual on the design and construction of driven piles. Order forms are available on the PDCA Web site.

Connect Worldwide at www.piledrivers.org
The PDCA’s newly redesigned Web site at www.piledrivers.org lets you research the latest trends in the industry and find direct links to manufacturers, suppliers, engineers and others. PDCA members receive a free listing in our member search area, which is being used by an increasing number of end users to find pile driving contractors and services. Our forums area makes it easy for you to connect with others to discuss issues and problems.

Leadership Opportunities
Membership in the PDCA provides opportunities for recognition and leadership. Positions are available on the PDCA board of directors and various committees that impact the industry. The PDCA recognizes noteworthy contributions to the industry with our “Driven Pile Project of the Year” award, giving opportunities for high profile recognition.

Membership is available to you
There is strength in numbers and we, at the PDCA, need to count your company when telling government agencies, engineers and suppliers that we are interesting in keeping your business viable and in growing market share for the driven pile. We need your ideas and efforts in working together toward a common goal: the use of driven-pile solutions. You can contribute your expertise and assist the Association in developing:

• A greater focus on safety
• The quality of driven pile products
• The formatting of codes and specifications for the driven pile
• Support for a program to help educate students in the use of driven piles

Join today. Be part of a growing and vibrant organization the will play a key role in the future of deep foundations. Support your industry by completing the membership application in this issue. You will immediately begin to enjoy benefits of membership.

“Through its programs and services, PDCA has presented our company with numerous opportunities to continue our business success. It is certainly a cornerstone for growth in a very competitive business.”

D.R. Jordan, President and CEO, Jordan Pile Driving, Inc.
Step 1: Select Membership Type

I wish to apply for the following membership status (check one):

☐ Contractor ☐ (Annual Gross Sales >$1 Mil./year: $725/year).
☐ (Annual Gross Sales <$1 Mil./year: $350/year)

A Contractor Member is defined as a specialty subcontractor or general contractor who commonly installs driven piles for foundations and earth retention systems. Includes one primary membership. Secondary memberships are $75 each.

☐ Associate ($725/year)

Associate Members of the Association shall consist of firms or corporations engaged in the manufacture and/or supply of equipment, materials, testing or other services to the pile driving industry. Secondary memberships are $75 each.

☐ Technical Affiliate ($95/year)

Technical Affiliate Members of the Association shall consist of individuals who are involved with the design and installation of driven piles or in teaching the art and science of pile design and installation. They may be employed engineers, architects, government agencies, or universities. Employees of contractors are not eligible to become Technical Affiliate Members. Note: Technical Affiliate Membership category is for individuals only. For a company listing in the directory and on the Web site, you must join as an Associate Member.

☐ Retired Industry Member ($50/year)

A Retired Member shall be defined as any individual who has reached retirement age as defined by U.S. law, who has left active employment and who wishes to remain a member.

I am retiring as a: ☐ Contractor ☐ Associate ☐ Technical Affiliate

Step 2: Demographic Information

Company Name ________________________________ Phone ________________________________
Your Name ________________________________ Fax ________________________________
Address ________________________________ Email ________________________________
City/State/Zip ________________________________ Home Page ________________________________

Step 3. Method of Payment

Attached is my payment of $___________ for annual dues.

☐ I understand that dues are due annually on December 31 and, that if I joined PDCA after March 31, I may be entitled to a prorated dues amount for the subsequent year only.

I am making payment in full by

☐ Check # ___

☐ Credit Card: ☐ MasterCard ☐ Visa ☐ American Express

Card Number: __ Expiration Date: _________________________

Name as it appears on card: __________________________ Signature: __________________________

Please send this completed application to: PDCA | P.O. Box 66208, Orange Park, FL 32065
Phone: (888) 311-PDCA (7322) | Fax: (904) 264-9531 | www.piledrivers.org
Step 4. Geographic Areas Where Contracting, Products and Services Available

(All applicants check all that apply)

- All States
- AK
- AL
- AR
- AZ
- CA
- CO
- CT
- ID
- IL
- IN
- KS
- KY
- LA
- MD
- ME
- MI
- MN
- MO
- MS
- MT
- NE
- NH
- NJ
- NM
- NY
- OH
- OK
- OR
- PA
- RI
- SC
- SD
- TN
- TX
- UT
- VA
- WA
- WI
- WV
- WY
- Canada
- Mexico
- Europe
- Global

Step 5. Sponsorship: Who told you about PDCA?

Member Name: __

Step 6. Method of Payment

Attached is my payment of $___________ for annual dues.

- I understand that dues are due annually on December 31 and, that if I joined PDCA after March 31, I may be entitled to a prorated dues amount for the subsequent year only.

I am making payment in full by

- Check # __

- Credit Card:
 - MasterCard
 - Visa
 - American Express

Card Number: __ Expiration Date:_________________________

Name as it appears on card: __ Signature: ______________________

Please send this completed application to: PDCA | P.O. Box 66208, Orange Park, FL 32065
Phone: (888) 311-PDCA (7322) | Fax: (904) 264-9531 | www.piledrivers.org
New Contractor Members

<table>
<thead>
<tr>
<th>Company Name</th>
<th>City, State</th>
<th>Contact</th>
<th>Services Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahrens Piledriving</td>
<td>Cheyenne, Wyoming</td>
<td>Mark Ahrens</td>
<td>Bulkheads, deep excavation, marine, pile driving</td>
</tr>
<tr>
<td>Foundation Materials</td>
<td>New Orleans, Louisiana</td>
<td>Paul Tassin</td>
<td>Pile driving, general contractor</td>
</tr>
<tr>
<td>Franks Casing Crew and Rental</td>
<td>Lafayette, Louisiana</td>
<td>Donnie Crain</td>
<td>Marine, pile driving, off-shore, pipe sales, equipment sales & rental</td>
</tr>
<tr>
<td>Kuhn Construction</td>
<td>Hokessin, Delaware</td>
<td>M. Lawrence Kuhn</td>
<td>Docks & wharves, marine, pile driving</td>
</tr>
<tr>
<td>McDowell NW Piling, Inc.</td>
<td>Kent, Washington</td>
<td>Michael McDowell</td>
<td>Pile driving contractor, earth retention, general contracting</td>
</tr>
<tr>
<td>Pilotes Y Entabamientos Ltda</td>
<td>Santiago, Chile</td>
<td>Roberto Born</td>
<td>Piling</td>
</tr>
<tr>
<td>Saddlebrook Construction</td>
<td>Pickens, South Carolina</td>
<td>Don White</td>
<td>Pile driving contractor, bridge building, earth retention, general contracting</td>
</tr>
<tr>
<td>Sea & Shore Contracting</td>
<td>Boston, Massachusetts</td>
<td>Michael Lally</td>
<td>Bulkheads, deep dynamic compaction, deep excavation, docks & wharves, earth retention, general contracting, marine, pile driving</td>
</tr>
<tr>
<td>Sun Marine Maintenance</td>
<td>Frankford, Delaware</td>
<td>Michael R. Jahnigen</td>
<td>Pile driving contractor, bulkheads, docks & wharves, marine</td>
</tr>
<tr>
<td>Waterfront Marine Construction</td>
<td>Virginia Beach, Virginia</td>
<td>Ken Sutton</td>
<td>Bridge building, bulkheads, general contracting, highway & heavy civil, marine, pile driving</td>
</tr>
<tr>
<td>WH Engineering</td>
<td>Grand Junction, Colorado</td>
<td>Sandy Heley</td>
<td>Bridge building, earth retention, highway & heavy civil, pile driving</td>
</tr>
</tbody>
</table>

New Associate Members

<table>
<thead>
<tr>
<th>Company Name</th>
<th>City, State</th>
<th>Contact</th>
<th>Services Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantel</td>
<td>Ottawa, Ontario</td>
<td>Rob Lee</td>
<td>Instrumentation for Vibration Monitoring</td>
</tr>
<tr>
<td>Kobelco Cranes</td>
<td>Houston, Texas</td>
<td>Jack Fendrick</td>
<td>Cranes</td>
</tr>
<tr>
<td>PilePro</td>
<td>Rapid City, South Dakota</td>
<td>Rob Wendt</td>
<td>Sheet piling accessories</td>
</tr>
<tr>
<td>Standard Concrete Products</td>
<td>Savannah, Georgia</td>
<td>Wayne McGowan</td>
<td>Concrete piles</td>
</tr>
<tr>
<td>TA Services, Inc.</td>
<td>Mansfield, Texas</td>
<td>Lilli Schaefer</td>
<td>Trucking</td>
</tr>
<tr>
<td>Trinity Products</td>
<td>O'Fallon, Missouri</td>
<td>Brad Mehrhoff</td>
<td>Cutter heads & drill bits, pile points & splicers, steep pipe piles, structural steel</td>
</tr>
</tbody>
</table>

New Technical Members

<table>
<thead>
<tr>
<th>Company Name</th>
<th>City, State</th>
<th>Contact</th>
<th>Services Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buster Blalock</td>
<td>Wahoo Enterprises</td>
<td></td>
<td>Trucking</td>
</tr>
<tr>
<td>John Collins</td>
<td>Collins Company</td>
<td></td>
<td>Bridge building, bulkheads, general contracting, highway & heavy civil, marine, pile driving, marine, pile driving</td>
</tr>
<tr>
<td>Shawn “Tiny” J. Etier</td>
<td>GS2 Engineering & Environmental Consultants, Inc.</td>
<td></td>
<td>Geotechnical engineering, pile driving monitoring, vibration monitoring</td>
</tr>
<tr>
<td>Daniel Ferron</td>
<td>Arcelor International</td>
<td></td>
<td>Sheet piling</td>
</tr>
<tr>
<td>Pat Flynn</td>
<td>Robertson & Hollingsworth</td>
<td></td>
<td>Dynamic pile testing, geotechnical engineering</td>
</tr>
<tr>
<td>Steve Kiser</td>
<td>MACTEC Engineering & Consulting, Inc.</td>
<td></td>
<td>Analysis, civil & design, geotechnical, materials testing, pile driving monitoring, vibration monitoring</td>
</tr>
<tr>
<td>Ronald Lejman</td>
<td>GMU Geotechnical</td>
<td></td>
<td>Consulting, geotechnical, materials testing, pile driving monitoring, vibration monitoring</td>
</tr>
<tr>
<td>Jim McNance</td>
<td>Carpenters Training Union</td>
<td></td>
<td>Pile driving training</td>
</tr>
<tr>
<td>Randy Wirt</td>
<td>MACTEC Engineering & Consulting, Inc.</td>
<td></td>
<td>Geotechnical</td>
</tr>
</tbody>
</table>

We would like to welcome the following new members. Please visit the PDCA Web site at www.piledrivers.org and click on Member Search for complete contact information on all members.
THE PILE DRIVING CONTRACTORS ASSOCIATION (PDCA) IS ACCEPTING APPLICATIONS FOR THE

“Driven Pile Project of the Year” (2005)

As a means of recognizing noteworthy contributions to the industry, PDCA will recognize outstanding projects that utilized driven piles to solve foundation problems.

There are two award categories. The first category is for projects where the value of the piling work was $1,000,000 or less. The second category is for projects where the value of the piling work was over $1,000,000.

Qualification for nomination requires projects only to involve driven piles, that the piledriving be completed during 2004 or 2005, and that at least one participant was a PDCA member during the year as a contractor, technical affiliate or as associate member. Projects will be judged on qualities such as, but not limited to, uniqueness, timeliness, unusual aspects of piledriving or unusual solutions to foundation problems, value engineering or value to the public or industry.

The best way to promote the effectiveness and versatility of the driven pile is through your work!

To obtain entry forms or additional information, please visit www.piledrivers.org or contact:

PDCA
P.O. Box 66208
Orange Park, FL 32065

Phone: (888) 311-PDCA (7322):
Email: execdir@piledrivers.org

The winning projects will be recognized at the PDCA 2006 Winter Roundtable and featured in future editions of PILEDRIVER Magazine as well as our website, www.piledrivers.org.

Nominations will close January 1, 2006.
This project in New York City involves the replacement of the northbound Whitestone Expressway over the Flushing River at the Van Wyck Expressway interchange. Three fixed span structures over the river will replace a bascule bridge that was built in 1939. The three structures over the river include the northbound Van Wyck Expressway ramp, Astoria Boulevard approach along the mainline northbound Whitestone Expressway and a ramp to Linden Place. Reconstruction of the ramp to southbound Van Wyck Expressway is also included in this work. This New York State Department of Transportation (NYSDOT) project was awarded in 2003 at a cost of $177 M. Located in the Flushing Meadows section of Queens, the project is near LaGuardia Airport, Shea Stadium, the U.S. Tennis Center, and the site of the 1939 and 1964 World’s Fairs.

During the design phase of the project, the challenge was to provide cost-efficient foundations that could resist high lateral loads in poor soil conditions. The project is located in a filled tidal wetland with Organic Silt deposits as thick as 50 feet. Below the Organic Silt are intermittent layers of Silty Clay underlain by Silty Sand with sporadic boulders. A requirement for the deep foundation design is the resistance of lateral loads from a seismic event including the transient loads induced by the soil. The foundation was also required to resist drag loads from consolidation of the Miscellaneous Fill and Organic Silt.

The objective was to find a deep foundation that provided efficient lateral stiffness, avoided soil clean-out, eliminated underwater concreting and was straightforward to inspect. It was also important to choose an installation method that could draw on local contractor experience in order to optimize competitive bidding. After weighing these considerations, large diameter cast-in-place (CIP) concrete piles became the foundation of choice. A new payment item for 18 inch and 24 inch CIP piles was created for this project since this was a first time use of these sizes on a NYSDOT project. CIP piles with a diameter of 14 inches were also used on this project.

The NYSDOT CIP pile is a steel pipe driven with a conical or flat plate shoe. The pipe is filled with concrete after it is driven and is connected to the footing with a partial length reinforcement cage. The 24 inch pile was designed to carry a maximum allowable load of 500 kips and the 18 inch pile 270 kips. An allowable lateral load was initially calculated for each pile size based on assumed pile layouts. The analyses
Monotube® Piles saved millions in its deep foundation work.

This uniquely designed stadium represents a significant long-term investment for the greater Milwaukee region. Getting it done on budget meant looking at every cost alternative. Geotechnical engineers recommended designing and implementing a test pile program to determine the most cost-effective deep foundation pile system. Two types were selected to be tested: straight, parallel-sided steel pipe and our uniformly-tapered steel Monotube® piles.

Their summary showed the Monotube® piles to be the most economical by far. Examining the results on an installed cost-per-ton supported, data showed the Monotube® achieved a 400-ton ultimate capacity at the 77-ft. range. The pipe, by comparison, required over 100-ft. embedment to obtain a 300-ton ultimate capacity. Using conventional equipment, Monotube® piles required significantly less time and hammer blows to penetrate to final design depth, thus achieving design capacity with much shorter embedment lengths. Importantly, it was recognized that by investing a relatively small amount of money in a test pile program early on, millions could be saved in the deep foundation work designated for driven piling.

Similar levels of savings have been repeated time and again over our 80-plus years in the industry. Your heavy projects could benefit equally. Call for our free test data brochure – it’s a fresh look at solid economics.
were later repeated using the final pile group configuration to verify that the movement and stresses were within acceptable tolerances.

Static Pile Load Test

The piles were driven with a Delmag D46-32 single acting diesel hammer which has a rated energy of 122 kip-ft at the maximum stroke. Pile Driving Analyzer (PDA) monitoring was used to evaluate hammer operation, measure driving stresses and establish pile driving criteria through capacity verification. A static pile load test (SPLT) was conducted on the first 24 inch diameter pile installed on the project. PDA monitoring was also conducted on this pile during initial drive and restrike. The steel pipe did not have sufficient section to resist the expected failure load from the SPLT test therefore it was filled with concrete before the test. Consequently the diesel hammer was unable to sufficiently move the pile during the PDA restrike test that was performed after the SPLT. In order to determine the correlation between the SPLT and PDA results a restrike was done using the GRL Engineers’ Apple system with a 40 kip drop weight.

Apple Test

Early in the foundation work, it became a challenge to find a location that was accessible to the pile driving equipment and with sufficient space to construct the SPLT frame. Locations with the deep Organic Silt deposits combined with a thin veneer of Fill were not desirable to set up wood cribbing or drive reaction piles. Therefore the 24 inch diameter SPLT pile was installed at a footing location for 18 inch piles where the Organic Silt layer is thin and the Fill layer substantial. Since the pile was utilized in the foundation, it was located in the center of the footing where it could have the least effect on the lateral stiffness of the pile group. The load reaction was provided by eight tapered Monotube piles and steel billets supported on wood cribbing. The SPLT was conducted one month after the pile was driven. The toe of the 74 foot deep pile was in Silty Clay and it achieved a plunging failure load of 1300 kips at a top movement of 0.75 inches.

Seven months after the SPLT an Apple test was run using a 40 kip weight dropped at heights of 2.0, 3.5 and 4.6 feet with standard PDA equipment used for the strain and acceleration measurements. A virtually frictionless free fall of the weight is obtained by cutting the steel support cable with a remote hydraulic device. All of the footing piles were driven one month prior to the Apple test. A simulated static load-set plot obtained from the CAPWAP analyses showed the pile achieved a plunging failure at a higher load but at the same movement as the SPLT. The higher measured load from the Apple test was likely due to the longer setup period and consolidation of the soil caused by driving the surrounding footing piles.
Nucor-Yamato Steel’s HP8, HP10, HP12 & HP14, PS and PZ Sheet Piling

PILING PRODUCT FEATURES

CAST AND HOT ROLLED IN THE U.S.A.
NATIONWIDE PILING DEALER NETWORK
SHEET PILES HAVE PREFERRED BALL & SOCKET INTERLOCK
H-PILING AVAILABLE IN ASTM A572 GRADES 50 & 60
AND ASTM 690
SHEET-PILING AVAILABLE IN ASTM A328, ASTM A572 GRADES 50 & 60, AND ASTM 690

H-PILE SECTION SIZES

<table>
<thead>
<tr>
<th>Designation</th>
<th>Width</th>
<th>Height</th>
<th>Weight (Mass)</th>
<th>Moment of Inertia</th>
<th>Section Modulus</th>
<th>Surface Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in</td>
<td>cm</td>
<td>Single</td>
<td>Single Wall</td>
<td>Single Wall</td>
<td>Total Area</td>
</tr>
<tr>
<td></td>
<td>lb/ft</td>
<td>kg/m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in²</td>
<td>cm²</td>
<td>lbs</td>
<td>kgf</td>
<td>kgf</td>
<td>cm²</td>
</tr>
<tr>
<td>HP14x73</td>
<td>11.9</td>
<td>76.6</td>
<td>22.6</td>
<td>60.1</td>
<td>107</td>
<td>6031</td>
</tr>
<tr>
<td>HP14x89</td>
<td>13.1</td>
<td>78.2</td>
<td>28.5</td>
<td>63.1</td>
<td>134</td>
<td>11734</td>
</tr>
<tr>
<td>HP14x102</td>
<td>14.0</td>
<td>78.2</td>
<td>32.5</td>
<td>74.3</td>
<td>162</td>
<td>1622</td>
</tr>
<tr>
<td>HP14x117</td>
<td>14.9</td>
<td>79.9</td>
<td>38.0</td>
<td>80.7</td>
<td>191</td>
<td>1918</td>
</tr>
<tr>
<td>HP12x53</td>
<td>13.4</td>
<td>86.6</td>
<td>19.7</td>
<td>50.0</td>
<td>136</td>
<td>136</td>
</tr>
<tr>
<td>HP12x63</td>
<td>14.2</td>
<td>87.9</td>
<td>23.5</td>
<td>56.7</td>
<td>169</td>
<td>169</td>
</tr>
<tr>
<td>HP12x74</td>
<td>15.0</td>
<td>91.4</td>
<td>27.3</td>
<td>63.2</td>
<td>193</td>
<td>193</td>
</tr>
<tr>
<td>HP12x84</td>
<td>16.0</td>
<td>94.0</td>
<td>31.0</td>
<td>70.0</td>
<td>218</td>
<td>218</td>
</tr>
<tr>
<td>HP10x42</td>
<td>12.1</td>
<td>78.2</td>
<td>19.7</td>
<td>50.0</td>
<td>136</td>
<td>136</td>
</tr>
<tr>
<td>HP10x57</td>
<td>14.2</td>
<td>87.9</td>
<td>23.5</td>
<td>56.7</td>
<td>169</td>
<td>169</td>
</tr>
</tbody>
</table>

CAST AND HOT ROLLED IN THE U.S.A.
NATIONWIDE PILING DEALER NETWORK
SHEET PILES HAVE PREFERRED BALL & SOCKET INTERLOCK
H-PILING AVAILABLE IN ASTM A572 GRADES 50 & 60
AND ASTM 690
SHEET-PILING AVAILABLE IN ASTM A328, ASTM A572 GRADES 50 & 60, AND ASTM 690

SHEET PILING TECHNICAL DATA

<table>
<thead>
<tr>
<th>Section Designation</th>
<th>AREA</th>
<th>WIDTH</th>
<th>HEIGHT</th>
<th>WEIGHT (MASS)</th>
<th>MOMENT OF INERTIA</th>
<th>SECTION MODULUS</th>
<th>SURFACE AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in²</td>
<td>cm²</td>
<td>in</td>
<td>lbs</td>
<td>in³</td>
<td>lbs/ft</td>
<td>Total Area</td>
</tr>
<tr>
<td></td>
<td>lb/ft</td>
<td>kg/m</td>
<td>in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in²</td>
<td>cm²</td>
<td>lbs</td>
<td>kgf</td>
<td>kgf</td>
<td>kgf</td>
<td>cm²</td>
</tr>
<tr>
<td>PZ22</td>
<td>11.9</td>
<td>76.6</td>
<td>22.6</td>
<td>60.1</td>
<td>107</td>
<td>6031</td>
<td></td>
</tr>
<tr>
<td>PZ27</td>
<td>13.4</td>
<td>86.6</td>
<td>27.8</td>
<td>63.1</td>
<td>134</td>
<td>11734</td>
<td></td>
</tr>
<tr>
<td>PS27.5</td>
<td>15.2</td>
<td>98.2</td>
<td>31.5</td>
<td>55.0</td>
<td>154</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>PS31</td>
<td>17.0</td>
<td>101.6</td>
<td>35.1</td>
<td>60.0</td>
<td>175</td>
<td>175</td>
<td></td>
</tr>
</tbody>
</table>

SheET PILING HAVE PREFERRED BALL & SOCKET INTERLOCK
H-PILING AVAILABLE IN ASTM A572 GRADES 50 & 60
AND ASTM 690
SHEET-PILING AVAILABLE IN ASTM A328, ASTM A572 GRADES 50 & 60, AND ASTM 690

NUCOR-YAMATO STEEL PILING DEALERS

- Fargo Structural, Fargo, ND (701) 282-2345
- Mid-America Foundation Supply, Inc., Fort Wayne, IN (800) 348-1890
- National Pipe and Piling, Inc., Tacoma, WA (253) 274-9800
- D.P. Nicoli, Inc., Tualatin, OR (503) 692-6080
- Husker Steel, Columbus, NE (402) 564-3271
- J. D. Fields and Company, Inc., South Holland, IL (708) 333-5511
- Bethlehem, PA (610) 317-6304
- Houston, TX (281) 658-7189
- Skyline Steel Corporation, Birmingham, AL (205) 262-9909
- Citrus Heights, CA (916) 863-6000
- Norcross, GA (770) 242-9007
- Tinley Park, IL (708) 444-0999
- Mandeville, LA (985) 624-3620
- Earth City, MO (314) 739-1303
- Middletown, NJ (732) 671-5900
- West Chester, OH (513) 777-7039
- Pittsburgh, PA (412) 561-3995
- Pearland, TX (713) 992-4000
- Fairfax Station, VA (703) 978-2500
- Gig Harbor, WA (253) 858-9405
- Skyline Canada, St-Bruno, Quebec (450) 461-3368

Steel H-Piling Dealer · Steel Sheet Piling Dealer
Since the two independent test methods were in agreement, confidence was gained in the determination of capacity from the PDA measurements. The piles achieved capacity close to the estimated length for the entire project and the hammer proved to be compatible with the pile-soil system. Templates were required in the river cofferdams to maintain proper pile plan location. At one pier location, pile damage was caused by obstructions and at other locations from hard driving caused by soil consolidation in combination with unrelieved buoyant forces. The damaged piles filled with sediment and could not be removed therefore replacement piles were driven at adjacent locations.

Shaft Resistance for 18 inch Pile

Completed Piers
Congratulations PDCA on 10 Years

PO Box 1847
Texas City, Texas 77592
Phone 409-945-3459
Metro 281-488-3247
www.pilinginc.com

For Sale –
MKT 9B3 Hammer with wood pile anvil, plat anvil and sheet pile anvil. Plenty of spare parts.
Hammer is mounted on F.E.C. Type leads 60’ long.
Hammer and leads transported on a special 12 ton trailer which can be towed with pickup truck.
$15,000 for hammer. $7,000 for leads and trailer.

SUN PILEDRIVING EQUIPMENT. PH.302-539-7187

For Sale –
MKT 9B3 Hammer with wood pile anvil, plat anvil and sheet pile anvil. Plenty of spare parts.
Hammer is mounted on F.E.C. Type leads 60’ long.
Hammer and leads transported on a special 12 ton trailer which can be towed with pickup truck.
$15,000 for hammer. $7,000 for leads and trailer.

SUN PILEDRIVING EQUIPMENT. PH.302-539-7187

For Sale –
MKT 9B3 Hammer with wood pile anvil, plat anvil and sheet pile anvil. Plenty of spare parts.
Hammer is mounted on F.E.C. Type leads 60’ long.
Hammer and leads transported on a special 12 ton trailer which can be towed with pickup truck.
$15,000 for hammer. $7,000 for leads and trailer.

SUN PILEDRIVING EQUIPMENT. PH.302-539-7187

For Sale –
MKT 9B3 Hammer with wood pile anvil, plat anvil and sheet pile anvil. Plenty of spare parts.
Hammer is mounted on F.E.C. Type leads 60’ long.
Hammer and leads transported on a special 12 ton trailer which can be towed with pickup truck.
$15,000 for hammer. $7,000 for leads and trailer.

SUN PILEDRIVING EQUIPMENT. PH.302-539-7187

For Sale –
MKT 9B3 Hammer with wood pile anvil, plat anvil and sheet pile anvil. Plenty of spare parts.
Hammer is mounted on F.E.C. Type leads 60’ long.
Hammer and leads transported on a special 12 ton trailer which can be towed with pickup truck.
$15,000 for hammer. $7,000 for leads and trailer.

SUN PILEDRIVING EQUIPMENT. PH.302-539-7187

For Sale –
MKT 9B3 Hammer with wood pile anvil, plat anvil and sheet pile anvil. Plenty of spare parts.
Hammer is mounted on F.E.C. Type leads 60’ long.
Hammer and leads transported on a special 12 ton trailer which can be towed with pickup truck.
$15,000 for hammer. $7,000 for leads and trailer.

SUN PILEDRIVING EQUIPMENT. PH.302-539-7187

For Sale –
MKT 9B3 Hammer with wood pile anvil, plat anvil and sheet pile anvil. Plenty of spare parts.
Hammer is mounted on F.E.C. Type leads 60’ long.
Hammer and leads transported on a special 12 ton trailer which can be towed with pickup truck.
$15,000 for hammer. $7,000 for leads and trailer.

SUN PILEDRIVING EQUIPMENT. PH.302-539-7187

For Sale –
MKT 9B3 Hammer with wood pile anvil, plat anvil and sheet pile anvil. Plenty of spare parts.
Hammer is mounted on F.E.C. Type leads 60’ long.
Hammer and leads transported on a special 12 ton trailer which can be towed with pickup truck.
$15,000 for hammer. $7,000 for leads and trailer.

SUN PILEDRIVING EQUIPMENT. PH.302-539-7187

For Sale –
MKT 9B3 Hammer with wood pile anvil, plat anvil and sheet pile anvil. Plenty of spare parts.
Hammer is mounted on F.E.C. Type leads 60’ long.
Hammer and leads transported on a special 12 ton trailer which can be towed with pickup truck.
$15,000 for hammer. $7,000 for leads and trailer.

SUN PILEDRIVING EQUIPMENT. PH.302-539-7187

For Sale –
MKT 9B3 Hammer with wood pile anvil, plat anvil and sheet pile anvil. Plenty of spare parts.
Hammer is mounted on F.E.C. Type leads 60’ long.
Hammer and leads transported on a special 12 ton trailer which can be towed with pickup truck.
$15,000 for hammer. $7,000 for leads and trailer.

SUN PILEDRIVING EQUIPMENT. PH.302-539-7187

For Sale –
MKT 9B3 Hammer with wood pile anvil, plat anvil and sheet pile anvil. Plenty of spare parts.
Hammer is mounted on F.E.C. Type leads 60’ long.
Hammer and leads transported on a special 12 ton trailer which can be towed with pickup truck.
$15,000 for hammer. $7,000 for leads and trailer.

SUN PILEDRIVING EQUIPMENT. PH.302-539-7187

For Sale –
MKT 9B3 Hammer with wood pile anvil, plat anvil and sheet pile anvil. Plenty of spare parts.
Hammer is mounted on F.E.C. Type leads 60’ long.
Hammer and leads transported on a special 12 ton trailer which can be towed with pickup truck.
$15,000 for hammer. $7,000 for leads and trailer.

SUN PILEDRIVING EQUIPMENT. PH.302-539-7187

For Sale –
MKT 9B3 Hammer with wood pile anvil, plat anvil and sheet pile anvil. Plenty of spare parts.
Hammer is mounted on F.E.C. Type leads 60’ long.
Hammer and leads transported on a special 12 ton trailer which can be towed with pickup truck.
$15,000 for hammer. $7,000 for leads and trailer.

SUN PILEDRIVING EQUIPMENT. PH.302-539-7187
The data presented in the following table (page 50) and shown in the graph to the left is from PDA initial drive and restrike tests performed on an 18 inch diameter pile. The increase in soil shaft resistance after setup was most dramatic in the Silty Sand Clayey Gravelly layer with the setup increase for the entire pile almost 100 percent.

Large diameter cast-in-place concrete piles are a cost-efficient solution for foundations with high lateral and axial load demand especially where footing space is limited. Due to the lower redundancy of the group, it becomes more critical to maintain the specified pile alignment and to avoid damage. Careful attention should be paid to controlling driving stresses and where obstructions are likely pre-drilling should be considered. PDA monitoring played a valuable role in maintaining quality control on the pile driving throughout the project.

<table>
<thead>
<tr>
<th>Depth Below Grade (Feet)</th>
<th>Soil Resistance (Kips)</th>
<th>Percent Increase</th>
<th>Soil Profile</th>
<th>SPT Spoon Blows (BPF)</th>
<th>Moisture Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>30</td>
<td>30</td>
<td>0</td>
<td>Silty Sand Gravelly (Fill)</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>20</td>
<td>5</td>
<td>Organic Silt</td>
<td>WOH</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>Organic Silt</td>
<td>WOH</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>Organic Silt</td>
<td>WOH</td>
</tr>
<tr>
<td>39</td>
<td>5</td>
<td>40</td>
<td>35</td>
<td>Silty Sand Clayey Gravelly</td>
<td>7</td>
</tr>
<tr>
<td>46</td>
<td>10</td>
<td>65</td>
<td>55</td>
<td>Silty Sand Gravelly</td>
<td>22</td>
</tr>
<tr>
<td>52</td>
<td>15</td>
<td>80</td>
<td>65</td>
<td>Silty Sand Gravelly</td>
<td>29</td>
</tr>
<tr>
<td>59</td>
<td>30</td>
<td>90</td>
<td>60</td>
<td>Silty Sand Clayey Gravelly</td>
<td>27</td>
</tr>
<tr>
<td>66</td>
<td>50</td>
<td>80</td>
<td>30</td>
<td>Silty Sand Clayey Gravelly</td>
<td>23</td>
</tr>
<tr>
<td>72</td>
<td>65</td>
<td>70</td>
<td>5</td>
<td>Silty Sand Gravelly</td>
<td>37</td>
</tr>
<tr>
<td>79</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>Silty Sand Gravelly</td>
<td>66</td>
</tr>
<tr>
<td>85</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>Clayey Silt Sandy Gravelly</td>
<td>57</td>
</tr>
<tr>
<td>TOE</td>
<td>125</td>
<td>240</td>
<td>115</td>
<td>Clayey Silt Sandy Gravelly</td>
<td>46</td>
</tr>
<tr>
<td>SUM</td>
<td>420</td>
<td>815</td>
<td>395</td>
<td>94%</td>
<td>Percent of SUM</td>
</tr>
</tbody>
</table>
JUST ADD AIR

Parts

Service

CONSTRUCTION EQUIPMENT

206/762-3550 pacoequip.com 800/678-6379

STADIUMS, BRIDGES OR WALLS

If driving pile is your aim, join our winning team to put you on top of your game!

New Busch Stadium in St. Louis
Edward Kraemer & Sons, Contractor

1198 Pershall Road
St. Louis, MO 63137
314.869.8600
www.mve-stl.com
H&M VIBRO, INC.
P.O. Box 224, Grandville, MI 49468
Toll Free: (800) 648-3403
(616) 538-4150
www.hmhibro.com

Model H-1700
Vibratory Driver/Extractor
Features:
• 75 Ton Pile Clamping Force
• 30 Ton Extraction Line Pull
• Weight: 7,000 Pounds
• Optional Counterweight: 3,600 Pounds
• CAT 3126 Power Pack

SALES AND RENTALS

PPI
Piling Products, Inc.
945 Center Street
Green Cove Springs, FL 32043
(904) 287-8000
Fax (904) 529-7757

Rental & Sales Steel Sheet Piling • Sales & Rental of “H” Bearing Piles • Rental of Hammer/Extractors
www.pilingproducts.com

PDCA
Calendar of Events

March 2-4, 2006
10th Anniversary Annual Conference
Hilton Palacio Del Rio Hotel
San Antonio, Texas

June 17-23, 2007
2007 PDCA Professors Piling Institute
Utah State University

Other Industry Events

October 4-6, 2006
DFI 31st Annual Conference on Deep Foundations and Members Meeting
Omni Shoreham Hotel
Washington, D.C.

No order too big or too small......SERVICE is our motto.

Advertiser Index

American Engineering Testing, Inc. 18
American Piledriving Equipment, Inc. OBC
BAUER Equipment USA, Inc. 7
Bermingham Foundation Solutions IFC
Blakeslee Arpaia Chapman, Inc. 44
Carolina Pole Inc. 6
Chaparral Steel 31
Connaco ... 21
Ed Waters & Sons Contracting Co., Inc. 18
Ferreras Equipment LLC 18
Ford Pile Foundations, Inc. (Marine Contracting) 33
Fortenberry Pipe & Supply Co. 18
Frank’s ... 15
Geokon, Inc. .. 10
Giken America Corp. 27
Goble Engineering 44
GRL Engineers, Inc. 10
Gunderboom, Inc. 21
GZA GeoEnvironmental, Inc. 22
H.B. Fleming, Inc. 30
JD Fields & Co 23
Junttan .. 12
Kelly Tractor Co. 17
L.B. Foster Company IBC
Liebherr Nenzing Crane Co. 5
Mandal Pipe Company 19
Midwest Vibro for H&M Vibro 48
Mississippi River Equipment Co. Inc. 26
Mississippi Valley Equipment Co. 47
Monotube Pile Corporation 41
Municon Consultants 32
National Ventures 46
Nucor-Yamato Steel 43
Pacific American Commercial Co. (PACO) 47
Parker Marine Contracting 44
Pile Dynamics, Inc. 46
Pileco, Inc. ... 3
PilePro ... 24
Piling Products, Inc. 48
Piling, Inc. .. 45
Seaboard Steel 22
Shoreline Steel, Inc. 32
Specialty Piling Systems, Inc. 45
Sun Piledriving Equipment, LLC 45
Timber Piling Council 45

Advertiser Index
Foster Drives Today’s Foundation Solutions

• Engineered Piling Solutions
 Open Cell and Combi-Wall

• New Domestic Sheet Piling
 Wider, Lighter, Stronger Chaparral PZCTM Series
 12, 13, 14, 17, 18, 19
 Traditional Sections
 PZ 22RU, 27RU, and 35

• New Foreign Sheet Piling
 Advantageous Strength-to-Weight Ratio Hoesch Series

• H Piling

• Pipe Piling

• Coming Soon! PZ 40